printf("\t example 20.4 \n"); printf("\t approximate values are mentioned in the book \n"); T1=450; // inlet hot fluid,F T2=150; // outlet hot fluid,F t1=85; // inlet cold fluid,F t2=100; // outlet cold fluid,F W=3360; // lb/hr w=11100; // lb/hr printf("\t 1.for heat balance \n"); printf("\t for SO2 \n"); c=0.165; // Btu/(lb)*(F) Q=((W)*(c)*(T1-T2)); // Btu/hr printf("\t total heat required for SO2 is : %.3e Btu/hr \n",Q); printf("\t for water \n"); c=1; // Btu/(lb)*(F) Q=((w)*(c)*(t2-t1)); // Btu/hr printf("\t total heat required for water is : %.3e Btu/hr \n",Q); delt1=T2-t1; //F delt2=T1-t2; // F printf("\t delt1 is : %.0f F \n",delt1); printf("\t delt2 is : %.0f F \n",delt2); LMTD=((delt2-delt1)/((2.3)*(log10(delt2/delt1)))); printf("\t LMTD is :%.0f F \n",LMTD); R=20; S=0.0412; FT=0.98; // fig 18 delt=(FT*LMTD); printf("\t delt is : %.0f F \n",delt); Tc=((T2)+(T1))/(2); // caloric temperature of hot fluid,F printf("\t caloric temperature of hot fluid is : %.0f F \n",Tc); tc=((t1)+(t2))/(2); // caloric temperature of cold fluid,F printf("\t caloric temperature of cold fluid is : %.1f \n",tc); printf("\t hot fluid:inner tube side, SO2 \n"); at=0.0512; // flow area, ft^2, table 11 printf("\t flow area is : %.4f ft^2 \n",at); Gt=(W/(at)); // mass velocity,lb/(hr)*(ft^2) printf("\t mass velocity is : %.2e lb/(hr)*(ft^2) \n",Gt); mu2=0.041; // at 300F,lb/(ft)*(hr), fig 15 D=0.256; // ft, table 11 Ret=((D)*(Gt)/mu2); // reynolds number printf("\t reynolds number is : %.1e \n",Ret); jH=790; // from fig.24 Z=0.006831; // Z=(k(c*mu/k)^(1/3)), Btu/(hr)*(ft)*(F/ft) hi=((jH)*(Z/D)); //Hi=(hi/phyp),using eq.6.15,Btu/(hr)*(ft^2)*(F) printf("\t hi is : %.1f Btu/(hr)*(ft^2)*(F) \n",hi); ID=3.068; // ft OD=3.5; // ft hio=((hi)*(ID/OD)); // using eq.6.5 printf("\t Correct hio to the surface at the OD is : %.1f Btu/(hr)*(ft^2)*(F) \n",hio); printf("\t cold fluid water \n"); L=8; // ft G=(w/(2*L)); printf("\t G : %.0f lb/(hr)*(ft) \n",G); mu1=1.94; // at 92.5F, lb/(ft)*(hr) Re=(4*G/mu1); printf("\t Re is : %.2e \n",Re); Do=0.292; // ft ho=(65*(G/Do)^(1/3)); printf("\t ho is : %.0f Btu/(hr)*(ft^2)*(F) \n",ho); Uc=((ho*hio)/(ho+hio)); // from eq 6.38 printf("\t Uc is : %.1f Btu/(hr)*(ft^2)*(F) \n",Uc); Rd=0.01; hd=(1/Rd); printf("\t hd is : %.0f \n",hd); UD=((Uc*hd)/(Uc+hd)); printf("\t UD is : %.1f Btu/(hr)*(ft^2)*(F) \n",UD); A=(Q/(UD*(LMTD))); printf("\t Area is : %.1f ft^2 \n",A); // calculation mistake in book a=0.917; // ft^2/ft, table 11 l=(A/(a*8)); printf("\t pipe length : %.2f \n",l); // end