printf("\t example 20.3 \n"); printf("\t approximate values are mentioned in the book \n"); T1=675; // inlet hot fluid,F T2=200; // outlet hot fluid,F t1=120; // inlet cold fluid,F t2=140; // outlet cold fluid,F W=33100; // lb/hr w=510000; // lb/hr printf("\t 1.for heat balance \n"); printf("\t for oil \n"); c=0.64; // Btu/(lb)*(F) Q=((W)*(c)*(T1-T2)); // Btu/hr printf("\t total heat required for oil is : %.2e Btu/hr \n",Q); printf("\t for water \n"); c=1; // Btu/(lb)*(F) Q=((w)*(c)*(t2-t1)); // Btu/hr printf("\t total heat required for water is : %.2e Btu/hr \n",Q); delt1=T2-t1; //F delt2=T1-t2; // F printf("\t delt1 is : %.0f F \n",delt1); printf("\t delt2 is : %.0f F \n",delt2); LMTD=230; printf("\t LMTD is :%.0f F \n",LMTD); Tc=((T2)+(T1))/(2); // caloric temperature of hot fluid,F printf("\t caloric temperature of hot fluid is : %.1f F \n",Tc); tc=((t1)+(t2))/(2); // caloric temperature of cold fluid,F printf("\t caloric temperature of cold fluid is : %.0f \n",tc); printf("\t hot fluid:inner tube side, oil \n"); at=0.0458; // flow area, ft^2, table 11 printf("\t flow area is : %.4f ft^2 \n",at); Gt=(W/(at)); // mass velocity,lb/(hr)*(ft^2) printf("\t mass velocity is : %.2e lb/(hr)*(ft^2) \n",Gt); mu2=5.56; // at 400F,lb/(ft)*(hr) D=0.242; // ft, table 11 Ret=((D)*(Gt)/mu2); // reynolds number printf("\t reynolds number is : %.2e \n",Ret); jH=100; // from fig.24 Z=0.245; // Z=(k(c*mu/k)^(1/3)), Btu/(hr)*(ft)*(F/ft), fig 16 hi=((jH)*(Z/D)); //Hi=(hi/phyp),using eq.6.15,Btu/(hr)*(ft^2)*(F) printf("\t hi is : %.0f Btu/(hr)*(ft^2)*(F) \n",hi); ID=2.9; // ft OD=3.5; // ft hio=((hi)*(ID/OD)); // using eq.6.5 printf("\t Correct hio to the surface at the OD is : %.1f Btu/(hr)*(ft^2)*(F) \n",hio); ho=150; // Btu/(hr)*(ft^2) tw=(tc)+(((hio)/(hio+ho))*(Tc-tc)); // from eq.5.31 printf("\t tw is : %.0f F \n",tw); tf=(tw+tc)/2; printf("\t tf is : %.0f F \n",tf); delt=110; // F d0=3.5; // in, fig 10.4 Uc=((ho*hio)/(ho+hio)); // from eq 6.38 printf("\t Uc is : %.1f Btu/(hr)*(ft^2)*(F) \n",Uc); Rd=0.01; hd=(1/Rd); printf("\t hd is : %.0f \n",hd); UD=((Uc*hd)/(Uc+hd)); printf("\t UD is : %.0f Btu/(hr)*(ft^2)*(F) \n",UD); A=(Q/(UD*(LMTD))); printf("\t Area is : %.0f ft^2 \n",A); a=0.917; // ft^2/ft, table 11 L=(A/(a*24)); printf("\t pipe length : %.0f \n",L); // end