printf("\t example 20.1 \n"); printf("\t approximate values are mentioned in the book \n"); T=150; // F L=0.6; // ft N=7500; // rev/hr row=62.5; // lb/ft^3 mu=1.06; // at 150 F and from fig 14, lb/ft*hr k=0.38; // Btu/(hr)*(ft^2)*(F/ft), from table 4 c=1; // Btu/(lb)*(F) Rej=(L^2)*(N)*(row)/(mu); printf("\t Rej is : %.1e \n",Rej); Z=1; // Z=(mu/muw)^(0.14), regarded as 1 for water Dj=1.01; // ft, from table 11 j=1100; // fig 20.2 hi=((j)*(k/Dj)*((c*mu/k)^(1/3))*(Z)^(0.14)); printf("\t hi is : %.0f Btu/(hr)*(ft^2)*(F) \n",hi); hoi=1500; // Btu/(hr)*(ft^2)*(F) Uc=((hi*hoi)/(hi+hoi)); // from eq 6.38 printf("\t Uc is : %.0f Btu/(hr)*(ft^2)*(F) \n",Uc); Rd=0.005; hd=(1/Rd); printf("\t hd is : %.0f \n",hd); UD=((Uc*hd)/(Uc+hd)); printf("\t UD is : %.0f Btu/(hr)*(ft^2)*(F) \n",UD); A=3.43; // ft^2 Q=32600; delt=(Q/(UD*A)); printf("\t temperature difference is : %.0f F \n",delt); Ts=(T+delt); printf("\t temperature of the steam : %.0f F \n",Ts); // end