printf("\t example 17.5 \n"); printf("\t approximate values are mentioned in the book \n"); T1=85; T2=120; R=0.93; // R=(L/G), for 1500 gpm printf("\t for 120percent of design \n"); R1=1.2*R; printf("\t R is : %.3f \n",R1); H1=39.1; // at 87.2F H2=H1+(R1*(T2-T1)); printf("\t H2 is : %.1f Btu \n",H2); // The area between the saturation line and the operating line represents the potential for heat transfer // at T=87.2F Hs=53.1; // from table in the solution d1=(Hs-H1); printf("\t difference is : %.1f \n",d1); //at t=90 Hs=56.7; // fig 17.12 H=42; // fig 17.12 d2=Hs-H; printf("\t difference is : %.1f \n",d2); d=(d1+d2)/(2); printf("\t average of difference is : %.1f \n",d); dT=(90-87.2); // F nd1=(dT/d); printf("\t nd1 is : %.3f \n",nd1); // similarly calculating nd at each temperature and adding them will give you total nd value nd=1.53; printf("\t number of diffusing units : %.2f \n",nd); printf("\t for 80 percent of design \n"); R2=0.8*R; printf("\t R is : %.3f \n",R2); H1=39.1; // at 87.2F H2=H1+(R2*(T2-T1)); printf("\t H2 is : %.0f Btu \n",H2); // The area between the saturation line and the operating line represents the potential for heat transfer // at T=82.5F Hs=47.2; // from table in the solution d1=(Hs-H1); printf("\t difference is : %.1f \n",d1); //at t=85 Hs=50; // fig 17.12 H=40.8; // fig 17.12 d2=Hs-H; printf("\t difference is : %.1f \n",d2); d=(d1+d2)/(2); printf("\t average of difference is : %.1f \n",d); dT=(85-82.5); // F nd1=(dT/d); printf("\t nd1 is : %.3f \n",nd1); // similarly calculating nd at each temperature and adding them will give you total nd value nd=1.92; printf("\t number of diffusing units : %.2f \n",nd); X=[1.115 0.93 0.74]; Y=[1.53 1.70 1.92]; plot2d(X,Y,style=3,rect=[0.7,1.4,1.3,2]); xtitle("KxaV/L vs L/G","L/G","nd"); printf("\t trial 1 \n"); R3=1.1; printf("\t R is : %.3f \n",R3); H1=34.5; // at 87.2F H2=H1+(R3*(T2-T1)); printf("\t H2 is : %.0f Btu \n",H2); // The area between the saturation line and the operating line represents the potential for heat transfer // at T=85F Hs=50; // from table in the solution d1=(Hs-H1); printf("\t difference is : %.1f \n",d1); //at t=90 Hs=56.7; // fig 17.12 H=40; // fig 17.12 d2=Hs-H; printf("\t difference is : %.1f \n",d2); d=(d1+d2)/(2); printf("\t average of difference is : %.1f \n",d); dT=(90-85); // F nd1=(dT/d); printf("\t nd1 is : %.3f \n",nd1); // similarly calculating nd at each temperature and adding them will give you total nd value nd=1.48; printf("\t number of diffusing units : %.2f \n",nd); R3=1.19; // from fig 17.14 printf("\t L/G is : %.2f \n",R3); printf("\t trial 2 \n"); R4=1.2; printf("\t R4 is : %.3f \n",R4); H1=34.5; // at 87.2F H2=H1+(R4*(T2-T1)); printf("\t H2 is : %.1f Btu \n",H2); // The area between the saturation line and the operating line represents the potential for heat transfer // at T=85F Hs=50; // from table in the solution d1=(Hs-H1); printf("\t difference is : %.1f \n",d1); //at t=90 Hs=56.7; // fig 17.12 H=40.5; // fig 17.12 d2=Hs-H; printf("\t difference is : %.1f \n",d2); d=(d1+d2)/(2); printf("\t average of difference is : %.1f \n",d); dT=(90-85); // F nd1=(dT/d); printf("\t nd1 is : %.3f \n",nd1); // similarly calculating nd at each temperature and adding them will give you total nd value nd=1.56; printf("\t number of diffusing units : %.2f \n",nd); R3=1.08; // from fig 17.14 printf("\t L/G is : %.2f \n",R3); // end