printf("\t example 16.3 \n"); printf("\t approximate values are mentioned in the book \n"); T1=250; // inlet hot fluid,F T2=200; // outlet hot fluid,F t1=80; // inlet cold fluid,F t2=120; // outlet cold fluid,F W=18000; // lb/hr w=11950; // lb/hr printf("\t 1.for heat balance \n") C=0.53; // Btu/(lb)*(F) Q=((W)*(C)*(T1-T2)); // Btu/hr printf("\t total heat required for gas oil is : %.2e Btu/hr \n",Q); c=1; // Btu/(lb)*(F) Q=((w)*(c)*(t2-t1)); // Btu/hr printf("\t total heat required for water is : %.2e Btu/hr \n",Q); delt1=T2-t1; //F delt2=T1-t2; // F printf("\t delt1 is : %.0f F \n",delt1); printf("\t delt2 is : %.0f F \n",delt2); LMTD=((delt2-delt1)/((2.3)*(log10(delt2/delt1)))); printf("\t LMTD is :%.0f F \n",LMTD); X=((delt1)/(delt2)); printf("\t ratio of two local temperature difference is : %.2f \n",X); Fc=0.47; // from fig.17 Kc=0.27; Tc=((T2)+((Fc)*(T1-T2))); // caloric temperature of hot fluid,F printf("\t caloric temperature of hot fluid is : %.0f F \n",Tc); tc=((t1)+((Fc)*(t2-t1))); // caloric temperature of cold fluid,F printf("\t caloric temperature of cold fluid is : %.0f F \n",tc); printf("\t hot fluid:shell side,gas oil \n"); ID=3.068; // in, table 11 OD=1.9; // in, table 11 af=0.0175; // fin cross section,table 10 aa=((3.14*ID^2/(4))-(3.14*OD^2/(4))-(24*af))/(144); printf("\t flow area is : %.4f ft^2 \n",aa); p=(3.14*(OD))-(24*0.035)+(24*0.5*2); printf("\t wetted perimeter : %.2f in \n",p); De=(4*aa*12/(p)); printf("\t De : %.4f ft \n",De); Ga=(W/aa); // mass velocity,lb/(hr)*(ft^2) printf("\t mass velocity is : %.2e lb/(hr)*(ft^2) \n",Ga); mu1=2.5*2.42; // at 224F,lb/(ft)*(hr), from fig.14 Rea=((De)*(Ga)/mu1); // reynolds number printf("\t reynolds number is : %.2e \n",Rea); jf=18.4; // from fig.16.10 Z=0.25; // Z=k*((c)*(mu1)/k)^(1/3), fig 16 Hf=((jf)*(1/De)*(Z)); // Hf=(hf/phya),using eq.6.15,Btu/(hr)*(ft^2)*(F) printf("\t individual heat transfer coefficient is : %.1f Btu/(hr)*(ft^2)*(F) \n",Hf); printf("\t cold fluid:inner tube side,water \n"); D=0.134; // ft row=62.5; at=(3.14*D^2/(4)); printf("\t flow area is : %.4f ft^2 \n",at); Gt=(w/(at)); // mass velocity,lb/(hr)*(ft^2) printf("\t mass velocity is : %.2e lb/(hr)*(ft^2) \n",Gt); V=(Gt/(3600*row)); printf("\t V is : %.2f fps \n",V); mu2=0.72*2.42; // at 99F,lb/(ft)*(hr) Ret=((D)*(Gt)/mu2); // reynolds number printf("\t reynolds number is : %.1e \n",Ret); hi=(970*0.82); // fig 25 printf("\t hi : %.0f Btu/(hr)*(ft^2)*(F) \n",hi); printf("\t calculation of tfw \n"); // Tc-tfw=40F assumption from fig 14 tfw=184; mufw=3.5; // cp, at 184F phya=(2.5/mufw)^0.14; printf("\t phya is : %.2f \n",phya); // from fig.24 hf=(Hf)*(phya); // from eq.6.36 printf("\t Correct hf to the surface at the OD is : %.1f Btu/(hr)*(ft^2)*(F) \n",hf); Rdo=0.002; Rf=(1/hf); printf("\t Rf : %.4f \n",Rf); hf1=(1/(Rdo+Rf)); // eq 16.37 printf("\t hf1 : %.1f \n",hf1); hfi1=255; // fig 16.9 hfi2=(hf1*5.76); // eq 16.38 and fig 16.9,((Af+Ao)/(Ai))=5.76 from previous prblm printf("\t hfi2 : %.0f \n",hfi2); Rmetal=(hfi2-hfi1)/(hfi2*hfi1); // eq 16.39 printf("\t Rmetal : %.5f \n",Rmetal); phyt=1; // for cooling water Rdi=0.003; Ri=(1/hi); printf("\t Ri : %.5f \n",Ri); hi1=(1/(Rdi+Ri)); // eq 16.40 printf("\t hi1 : %.1f \n",hi1); UDi=(hi1*hfi1)/(hi1+hfi1); // eq 16.41 printf("\t UDi : %.0f \n",UDi); // To obtain the true flux the heat load must be divided by the actual heat-transfer surface.For a 1}2-in. IPS pipe there are 0.422 ft2/lin foot, from table 11 // trial Ai=(Q/(UDi*LMTD)); // LMTD=delt printf("\t Ai : %.1f ft^2 \n",Ai); L=(Ai/0.422); printf("\t length of pipe required : %.1f lin ft \n",L); // Use two 20-ft hairpins = 80 lin ft Ai1=(80*0.422); // ft^2 r=(Q/Ai1); printf("\t Q/Ai1 : %.2e Btu/(hr)*(ft^2) \n",r); deltf=(r/hfi2); deltdo=(r*Rdo/5.76); printf("\t annulus film : %.1f \n",deltf); printf("\t annulus dirt : %.1f \n",deltdo); d=deltf+deltdo; // d=Tc-tfw deltmetal=(r*Rmetal); deltdi=(r*Rdi); delti=(r/hi); printf("\t Tc-tfw : %.1f \n",d); printf("\t fin and tube metal : %.1f \n",deltmetal); printf("\t tube side dirt : %.1f \n",deltdi); printf("\t tubeside film : %.1f \n",delti); Td=deltf+deltdo+deltmetal+deltdi+delti; printf("\t total temperature drop : %.1f F \n",Td); printf("\t pressure drop for annulus \n"); De1=0.0359; // ft Rea1=(De1*Ga/mu1); printf("\t reynolds number : %.2e \n",Rea1); f=0.00036; // fig 16.10 s=0.82; //using fig.6 delPs=((f*(Ga^2)*(80))/(5.22*(10^10)*(De1)*(s)*(phya))); // using eq.7.44,psi printf("\t delPs is : %.1f psi \n",delPs); printf("\t allowable delPa is 10 psi \n"); printf("\t pressure drop for inner pipe \n"); f=0.000192; // friction factor for reynolds number 65000, using fig.26 s=1; delPt=((f*(Gt^2)*(80))/(5.22*(10^10)*(0.134)*(s)*(1))); // using eq.7.45,psi printf("\t delPt is : %.1f psi \n",delPt); printf("\t allowable delPa is 10 psi \n"); //end