printf("\t example 15.1 \n"); printf("\t approximate values are mentioned in the book \n"); ts=250; T1=400; T2=300; w=10000; // lb/hr W=150000; // lb/hr l=945.3; // Btu/(lb) , table 7 Q=((w)*(l)); // Btu/hr printf("\t total heat required for steam is : %.2e Btu/hr \n",Q); C=0.63; // Btu/(lb)*(F) Q=((W)*(C)*(T1-T2)); // Btu/hr printf("\t total heat required for kerosene is : %.2e Btu/hr \n",Q); delt1=T2-ts; //F delt2=T1-ts; // F printf("\t delt1 is : %.0f F \n",delt1); printf("\t delt2 is : %.0f F \n",delt2); LMTD=((delt2-delt1)/((2.3)*(log10(delt2/delt1)))); printf("\t LMTD is :%.0f F \n",LMTD); UD=100; A=(Q/(UD*LMTD)); printf("\t A : %.2e ft^2 \n",A); WC=94500; // Btu/F vl=0.017; // ft^3/lb, from table 7 vv=13.75; // ft^3/lb, from table 7 printf("\t By the law of mixtures \n"); // Assume 80 per cent of the outlet fluid is vapor v2=(0.8*vv)+(.2*vl); printf("\t v2 : %.0f ft^3/lb \n",v2); vav=(WC*(v2-vl)/(UD*A))-((WC*(T2-ts)/(l*w))*(vv-vl))+vl; printf("\t vav : %.2f ft^3/lb \n",vav); printf("\t By the approximate method \n"); vav1=(vl+v2)/(2); printf("\t vav : %.2f ft^3/lb \n",vav1); row=62.5; rowac=(1/vav); s=(rowac/row); printf("\t actual density : %.3f lb/ft^3 \n",rowac); printf("\t s : %.4f \n",s); rowap=(1/vav1); s=(rowap/row); printf("\t approximate density : %.3f lb/ft^3 \n",rowac); printf("\t s : %.4f \n",s); // end