printf("\t example 13.5 \n"); // for a Basis of one Hour printf("\t approximate values are mentioned in the book \n"); c(1)=1544; // Flow rate of CO2, Lb/hr h(1)=4500; // Flow rate of H20, Lb/hr c(2)=35; //Flow rate of CO2, Mol/hr h(2)=250;//Flow rate of H20, Mol/hr t(1)=c(1)+h(1); //Total flow rate , Lb/hr t(2)=c(2)+h(2); //Total flow rate, Mol/hr Pt = (30+14.7)/(14.7); //Total Pressure in atm printf("\t Pt is %.2f\n",Pt); Pw = ( h(2)/t(2) )*Pt; //Partial pressure of Water in atm printf("\t Partial Pressure of Water: %.2f atm \n",Pw); Tw = 267; // from table 7 at 2.68atm Mm = (t(1)/t(2)); printf("\t mean molecular weight : %.1f \n",Mm); // weighted temperature difference // overall balance //for Inlet Pv=2.68; // water vapour pressure, atm Pg=Pt-Pv; // Inert pressure //for Exit Pw1 = 0.1152 // Partial pressure of water at 120 F Pv1 = 0.115; // Water vapor pressure Pg1 = 2.935; // Inert pressure w1 = 250; //Pound mols steam inlet w2 = c(2)*(Pv1/Pg1); printf("\tPound mols steam exit:%.2f\n",w2); w3 = w1 - w2; printf("\tPound mols steam condessed:%.2f\n",w3); //Assume points at 267, 262, 255,225,150,120 deg F //For the interval from 267 to 262 F Pv2 = 2.49; // From table 7 at 262 F Pg2 = Pt - Pv2; //Inert pressure printf("\tPg is %.2f",Pg2); w4 = c(2) * (Pv2/Pg2); //Mol steam remaining w5 = h(2) - w4; //Mol steam condensed printf("\tMol steam remaining:%.0f\n",w4); printf("\tMol steam condensed:%.0f\n",w5); h1 = (w5*18*937.3) + (0.46*(267-262) * w5 * 18); //Heat of condensation h2 = (w4 * 18 * 0.46*(267-262)); //Heat from uncondensed steam h3 = c(1)*0.22*5.0; //Heat from noncondensable printf("\tHeat of condensation:%.2e\n",h1); printf("\tHeat from uncondensed steam:%.2e\n",h2); printf("\tHeat from noncondensable:%.1e\n",h3); ht = h1+h2+h3;//Total heat printf("\tTotal heat:%.0f\n",ht); //Similarily calculating the Heat balance for other intervals printf("\tInterval,F\tTotal Heat\n\t267-262\t1,598,000\n\t262-255\t1,104,000\n\t255-225\t1,172,000\n\t225-150\t751,000\n\t150-120\t177,000\n\tTotal\t4,802,000\n"); w=4802000/(115-80); //Total water printf("\tTotal water: %.2e\n",w); //Water coefficient Nt = 246; at1 = 0.302; n = 4; at = Nt * (at1/(144*n)); // From eq 7.48 printf("\tat is %.3f ft^2\n",at); Gt = w/at; printf("\tGt is %.2e lb/(hr)(ft^2)\n",Gt); ro = 62.5; V = Gt/(3600*ro); printf("\tV is %.2f fps\n",V); hi = 1120; // From fig. 25 ID = 0.62; OD = 0.75; hi0= hi *(ID/OD); //From eq 6.5 printf("\thi0 is %.0f\n",hi0); //Mean properties at 267 F c = ((c(1)*0.22)+(h(1)*0.46))/t(1); // Calculation mistake in Book printf("\tMean c:%.3f Btu/(lb)(F)\n",c); k = ((c(1)*0.0128)+(h(1)*0.015))/t(1); // Calculation mistake in Book printf("\tMean k:%.4f Btu/(hr)(ft^2)(F/ft)\n",k); mu = (((c(1)*0.019)+(h(1)*0.0136))/t(1))* 2.42; // Calculation mistake in Book printf("\tMean mu:%.4f lb/(hr)(ft)\n",mu); ID1 = 21.25; C = 0.25; B = 12; PT = 1.0; as = ID1 * C * (B/(144*PT)); //From eq 7.1 printf("\tas is %.3f ft^2\n",as); Gs = t(1)/as //From eq 7.2 printf("\tGs is %.3e lb/(hr)(ft^2)\n",Gs); Ds = 0.0792; // From Fig 28 Res = Ds * (Gs/0.0363); // From eq 7.3 printf("\tRes is %.2e\n",Res); jH = 102; // From Fig 28 x = ((c*mu)/k)^(1/3); printf("\t(c.mu/k)^1/3 is %.0f\n",x); h0 = jH * 0.0146 * (x/Ds); //From eq 6.15b printf("\th0 is %.0f\n",h0); y = 0.62 // y = (mu/ro * kd)^(2/3) z = 1.01; // z = ((c*mu)/k)^(2/3) K = (h0*z)/(0.407*Mm*y); //KG = K/p0f printf("\tK is %.2f\n",K); //at point 1 Tg = 244; // F tW = 115; delt=(Tg-tW); printf("\t delt is %.0f F \n",delt);