printf("\t example 12.3 \n"); printf("\t approximate values are mentioned in the book \n"); T1=200; // inlet hot fluid,F T2=130; // outlet hot fluid,F T3=125; // after condensation t1=65; // inlet cold fluid,F t3=100; // outlet cold fluid,F W=27958; // lb/hr w=135500; // lb/hr printf("\t 1.for heat balance \n"); printf("\t for butane \n"); c=0.44; // Btu/(lb)(F) qd=((W)*(c)*(T1-T2)); // Btu/hr printf("\t total heat required for desuperheating of butane is : %.1e Btu/hr \n",qd); HT2=309; // enthalpy at T2, Btu/lb HT3=170; // enthalpy at T3, Btu/lb qc=(W*(HT2-HT3)); // for condensation printf("\t total heat required for condensing of butane is : %.2e Btu/hr \n",qc); Q=qd+qc; printf("\t total heat required for butane is : %.2e Btu/hr \n",Q); printf("\t for water \n"); c=1; // Btu/(lb)*(F) Q=((w)*(c)*(t3-t1)); // Btu/hr printf("\t total heat required for water is : %.2e Btu/hr \n",Q); deltw=(qc/w); printf("\t deltw is : %.1f F \n",deltw); t2=t1+deltw; printf("\t t2 is : %.1f F \n",t2) printf("\t for desuperheating \n"); delt1=T2-t2; //F delt2=T1-t3; // F printf("\t delt1 is : %.0f F \n",delt1); printf("\t delt2 is : %.0f F \n",delt2); LMTDd=((delt2-delt1)/((2.3)*(log10(delt2/delt1)))); printf("\t LMTD is :%.0f F \n",LMTDd); w1=(qd/LMTDd); printf("\t w1 is : %.3e lb/hr \n",w1); printf("\t for condensing \n"); delt3=T3-t1; //F delt4=T2-t2; // F printf("\t delt1 is : %.0f F \n",delt3); printf("\t delt2 is : %.0f F \n",delt4); LMTDc=((delt4-delt3)/((2.3)*(log10(delt4/delt3)))); printf("\t LMTD is :%.0f F \n",LMTDc); w2=(qc/LMTDc); printf("\t w1 is : %.2e lb/hr \n",w2); delt=(Q/(w1+w2)); printf("\t delt is : % .1f F \n",delt); Tc=((T3)+(T2))/(2); // caloric temperature of hot fluid,F printf("\t caloric temperature of hot fluid is : %.1f F \n",Tc); tc=((t1)+(t3))/(2); // caloric temperature of cold fluid,F printf("\t caloric temperature of cold fluid is : %.1f F \n",tc); printf("\t hot fluid:shell side,butane \n"); ID=23.25; // in C=0.25; // clearance B=12; // baffle spacing,in PT=1; as=((ID*C*B)/(144*PT)); // flow area,ft^2 printf("\t flow area is : %.3f ft^2 \n",as); printf("\t desuperheating \n"); Gs=(W/as); // mass velocity,lb/(hr)*(ft^2) printf("\t mass velocity is : %.2e lb/(hr)*(ft^2) \n",Gs); mu1=0.0242; // at 165F,lb/(ft)*(hr), from fig.15 De=0.73/12; // from fig.28,ft Res=((De)*(Gs)/mu1); // reynolds number printf("\t reynolds number is : %.2e \n",Res); jH=239; // from fig.28 k=0.012; // Btu/(hr)*(ft^2)*(F/ft), from table 5 Z=0.96; // Z=((c)*(mu1)/k)^(1/3) ho=((jH)*(k/De)*(Z)); // H0=(h0/phya),using eq.6.15b,Btu/(hr)*(ft^2)*(F) printf("\t individual heat transfer coefficient is : %.1f Btu/(hr)*(ft^2)*(F) \n",ho); printf("\t cold fluid:inner tube side,water \n"); Nt=352; n=4; // number of passes L=16; //ft at1=0.302; // flow area,table 10, in^2 at=((Nt*at1)/(144*n)); // total area,ft^2,from eq.7.48 printf("\t flow area is : %.3f ft^2 \n",at); Gt=(w/(at)); // mass velocity,lb/(hr)*(ft^2) printf("\t mass velocity is : %.2e lb/(hr)*(ft^2) \n",Gt); V=(Gt/(3600*62.5)); printf("\t V is : %.2f fps \n",V); mu2=2.11; // at 82.5F, fig 14,lb/(ft)*(hr) D=0.0517; // ft Ret=((D)*(Gt)/mu2); // reynolds number printf("\t reynolds number is : %.2e \n",Ret); hi=800; // fig 25,Btu/(hr)*(ft^2)*(F) printf("\t hi is : %.0f Btu/(hr)*(ft^2)*(F) \n",hi); ID=0.62; // ft OD=0.75; //ft hio=((hi)*(ID/OD)); // using eq.6.5 printf("\t Correct hio to the surface at the OD is : %.0f Btu/(hr)*(ft^2)*(F) \n",hio); Ud=((hio)*(ho)/(hio+ho)); // clean overall coefficient,eq 6.38,Btu/(hr)*(ft^2)*(F) printf("\t clean overall coefficient is : %.1f Btu/(hr)*(ft^2)*(F) \n",Ud); Ad=(qd/(Ud*LMTDd)); printf("\t clean surface required for desuperheating : %.0f ft^2 \n",Ad); printf("\t for condensaton \n"); Lc=16*0.6; // condensation occurs 60% of the tube length G1=(W/(Lc*Nt^(2/3))); // from eq.12.43 printf("\t G1 is : %.1f lb/(hr)*(lin ft) \n",G1); ho=200; // assumption tw=(tc)+(((ho)/(hio+ho))*(Tc-tc)); // from eq.5.31 printf("\t tw is : %.0f F \n",tw); tf=(Tc+tw)/(2); // from eq 12.19 printf("\t tf is : %.0f F \n",tf); kf=0.075; // Btu/(hr)*(ft^2)*(F/ft) sf=0.55; // from table 6 muf=0.14; // cp, from fig 14 ho=207; // Btu/(hr)*(ft^2)*(F), from fig 12.9 printf("\t Correct ho to the surface at the OD is : %.0f Btu/(hr)*(ft^2)*(F) \n",ho); Uc=((hio)*(ho)/(hio+ho)); // clean overall coefficient,Btu/(hr)*(ft^2)*(F) printf("\t clean overall coefficient is : %.0f Btu/(hr)*(ft^2)*(F) \n",Uc); Ac=(qc/(Uc*LMTDc)); printf("\t clean surface required for desuperheating : %.0f ft^2 \n",Ac); AC=Ad+Ac; printf("\t total clean surface : %.0f ft^2 \n",AC); lc=(Ac/(Ac+Ad)); printf("\t assumed condensing length percentage : %.2f \n",lc); UC=((Ud*Ad)+(Uc*Ac))/(AC); printf("\t weighted clean overall coefficient : %.0f Btu/(hr)*(ft^2)*(F) \n",UC); A2=0.1963; // actual surface supplied for each tube,ft^2,from table 10 A=(Nt*L*A2); // ft^2 printf("\t total surface area is : %.0f ft^2 \n",A); UD=((Q)/((A)*(delt))); printf("\t actual design overall coefficient is : %.0f Btu/(hr)*(ft^2)*(F) \n",UD); Rd=((UC-UD)/((UD)*(UC))); // (hr)*(ft^2)*(F)/Btu printf("\t actual Rd is : %.4f (hr)*(ft^2)*(F)/Btu \n",Rd); printf("\t pressure drop for annulus \n"); printf("\t desuperheating \n"); Ld=6.4; //ft De=0.0608; // fig 28 f=0.0013; // friction factor for reynolds number 145000, using fig.29 Ds=1.94; // ft phys=1; N=(12*Ld/B); // number of crosses,using eq.7.43 printf("\t number of crosses are : %.0f \n",N); row=(58.1/((359)*(625/492)*(14.7/99.7))); printf("\t row is %.3f lb/ft^3 \n",row); s=(row/62.5); printf("\t s is %.4f \n",s); delPsd=((f*(Gs^2)*(Ds)*(N))/(5.22*(10^10)*(De)*(s)*(phys))); // using eq.7.44,psi printf("\t delPs is : %.1f psi \n",delPsd); printf("\t condensation \n"); N=(12*Lc/B); // number of crosses,using eq.7.43 printf("\t number of crosses are : %.0f \n",N); delPsc=((f*(Gs^2)*(Ds)*(N))/(5.22*(10^10)*(De)*(s)*(phys)))/(2); // using eq 12.47,psi printf("\t delPsc is : %.1f psi \n",delPsc); delPS=delPsd+delPsc; printf("\t delPS is : %.0f psi \n",delPS); printf("\t allowable delPa is 2 psi \n"); printf("\t pressure drop for inner pipe \n"); f=0.00023; // friction factor for reynolds number 17900, using fig.26 s=1; phyt=1; delPt=((f*(Gt^2)*(L)*(n))/(5.22*(10^10)*(D)*(s)*(phyt))); // using eq.7.45,psi printf("\t delPt is : %.0f psi \n",delPt); X1=0.075; // X1=((V^2)/(2*g)),using fig.27 delPr=((4*n*X1)/(s)); // using eq.7.46,psi printf("\t delPr is : %.1f psi \n",delPr); delPT=delPt+delPr; // using eq.7.47,psi printf("\t delPT is : %.1f psi \n",delPT); printf("\t allowable delPa is 10 psi \n"); //end