printf("\t example 11.1 \n"); printf("\t approximate values are mentioned in the book \n"); T1=340; // inlet hot fluid,F T2=240; // outlet hot fluid,F t1=200; // inlet cold fluid,F t2=230; // outlet cold fluid,F W=29800; // lb/hr w=103000; // lb/hr printf("\t 1.for heat balance \n"); printf("\t for straw oil \n"); c=0.58; // Btu/(lb)*(F) Q=((W)*(c)*(T1-T2)); // Btu/hr printf("\t total heat required for straw oil is : %.2e Btu/hr \n",Q); printf("\t for naphtha \n"); c=0.56; // Btu/(lb)*(F) Q=((w)*(c)*(t2-t1)); // Btu/hr printf("\t total heat required for naphtha is : %.2e Btu/hr \n",Q); delt1=T2-t1; //F delt2=T1-t2; // F printf("\t delt1 is : %.0f F \n",delt1); printf("\t delt2 is : %.0f F \n",delt2); LMTD=((delt2-delt1)/((2.3)*(log10(delt2/delt1)))); printf("\t LMTD is :%.1f F \n",LMTD); R=((T1-T2)/(t2-t1)); printf("\t R is : %.1f \n",R); S=((t2-t1)/(T1-t1)); printf("\t S is : %.3f \n",S); printf("\t FT is 0.885 \n"); // from fig 18 delt=(0.885*LMTD); // F printf("\t delt is : %.1f F \n",delt); X=((delt1)/(delt2)); printf("\t ratio of two local temperature difference is : %.3f \n",X); L=16; Fc=0.405; // from fig.17 Kc=0.23; // crude oil controlling Tc=((T2)+((Fc)*(T1-T2))); // caloric temperature of hot fluid,F printf("\t caloric temperature of hot fluid is : %.1f F \n",Tc); tc=((t1)+((Fc)*(t2-t1))); // caloric temperature of cold fluid,F printf("\t caloric temperature of cold fluid is : %.0f F \n",tc); UD1=70; // assume, from table 8a A1=((Q)/((UD1)*(delt))); printf("\t A1 is : %.0f ft^2 \n",A1); a1=0.1963; // ft^2/lin ft N1=(A1/(16*a1)); printf("\t number of tubes are : %.0f \n",N1); N2=124; // assuming two tube passes, from table 9 A2=(N2*L*a1); // ft^2 printf("\t total surface area is : %.1e ft^2 \n",A2); UD=((Q)/((A2)*(delt))); printf("\t correct design overall coefficient is : %.1f Btu/(hr)*(ft^2)*(F) \n",UD); printf("\t hot fluid:shell side,straw oil \n"); ID=15.25; // in C=0.25; // clearance B=3.5; // minimum baffle spacing,from eq 11.4,in PT=1; as=((ID*C*B)/(144*PT)); // flow area,from eq 7.1,ft^2 printf("\t flow area is : %.4f ft^2 \n",as); Gs=(W/as); // mass velocity,from eq 7.2,lb/(hr)*(ft^2) printf("\t mass velocity is : %.2e lb/(hr)*(ft^2) \n",Gs); mu1=3.63; // at 280.5F,lb/(ft)*(hr), from fig.14 De=0.95/12; // from fig.28,ft Res=((De)*(Gs)/mu1); // reynolds number printf("\t reynolds number is : %.0e \n",Res); jH=46; // from fig.28 Z=0.224; // Z=(K*(c*mu3/k)^(1/3)),Btu/(hr)(ft^2)(F/ft), at mu3=1.5cp and 35 API Ho=((jH)*(1/De)*(Z)); // H0=(h0/phya),using eq.6.15,Btu/(hr)*(ft^2)*(F) printf("\t individual heat transfer coefficient is : %.0f Btu/(hr)*(ft^2)*(F) \n",Ho); phys=1; ho=(Ho)*(phys); // from eq.6.36 printf("\t Correct h0 to the surface at the OD is : %.0f Btu/(hr)*(ft^2)*(F) \n",ho); printf("\t cold fluid:inner tube side,naphtha \n"); Nt=124; n=2; // number of passes L=16; //ft at1=0.302; // flow area, in^2 at=((Nt*at1)/(144*n)); // total area,ft^2,from eq.7.48 printf("\t flow area is : %.3f ft^2 \n",at); Gt=(w/(at)); // mass velocity,lb/(hr)*(ft^2) printf("\t mass velocity is : %.2e lb/(hr)*(ft^2) \n",Gt); mu2=1.31; // at 212F,lb/(ft)*(hr) D=0.0517; // ft Ret=((D)*(Gt)/mu2); // reynolds number printf("\t reynolds number is : %.2e \n",Ret); jH=102; // from fig.24 Z=0.167; // Z=(K*(c*mu3/k)^(1/3)),Btu/(hr)(ft^2)(F/ft), at mu4=0.54cp and 48 API Hi=((jH)*(1/D)*(Z)); //Hi=(hi/phyp),using eq.6.15a,Btu/(hr)*(ft^2)*(F) printf("\t Hi is : %.0f Btu/(hr)*(ft^2)*(F) \n",Hi); ID=0.62; // ft OD=0.75; //ft Hio=((Hi)*(ID/OD)); //Hio=(hio/phyp), using eq.6.5 printf("\t Correct Hi0 to the surface at the OD is : %.0f Btu/(hr)*(ft^2)*(F) \n",Hio); phyt=1; hio=(Hio)*(phyt); // from eq.6.37 printf("\t Correct hi0 to the surface at the OD is : %.0f Btu/(hr)*(ft^2)*(F) \n",hio); printf("\t pressure drop for annulus \n"); f=0.00225; // friction factor for reynolds number 7000, using fig.29 s=0.76; // for reynolds number 7000,using fig.6 Ds=15.25/12; // ft N=(12*L/B); // number of crosses,using eq.7.43 printf("\t number of crosses are : %.0f \n",N); delPs=((f*(Gs^2)*(Ds)*(N))/(5.22*(10^10)*(De)*(s)*(phys))); // using eq.7.44,psi printf("\t delPs is : %.1f psi \n",delPs); printf("\t pressure drop for inner pipe \n"); f=0.0002; // friction factor for reynolds number 31300, using fig.26 s=0.72; delPt=((f*(Gt^2)*(L)*(n))/(5.22*(10^10)*(D)*(s)*(phyt))); // using eq.7.45,psi printf("\t delPt is : %.1f psi \n",delPt); Uc=((hio)*(ho)/(hio+ho)); // clean overall coefficient,Btu/(hr)*(ft^2)*(F) printf("\t clean overall coefficient is : %.1f Btu/(hr)*(ft^2)*(F) \n",Uc); Rd=((Uc-UD)/((UD)*(Uc))); // (hr)*(ft^2)*(F)/Btu printf("\t actual Rd is : %.4f (hr)*(ft^2)*(F)/Btu \n",Rd); printf("\t The first trial is disqualified because of failure to meet the required dirt factor \n"); printf("\t Proceeding as above and carrying the viscosity correction and pressure drops to completion the new summary is given using a 17.25in. ID shell with 166 tubes on two passes and a 3.5in. baffle space \n"); UD1=60; // assumption for 2 tube passes,3.5 baffle spacing and 17.25in ID UC1=74.8; printf("\t clean overall coefficient is : %.1f Btu/(hr)*(ft^2)*(F) \n",UC1); UD2=54.2; printf("\t correct design overall coefficient is : %.1f Btu/(hr)*(ft^2)*(F) \n",UD2); Rd1=0.005; printf("\t actual Rd is : %.3f (hr)*(ft^2)*(F)/Btu \n",Rd1); delPs1=4.7; printf("\t delPs is : %.1f psi \n",delPs1); delPt1=2.1; printf("\t delPt is : %.1f psi \n",delPt1); //end