printf("\t example 10.4 \n"); printf("\t approximate values are mentioned in the book \n"); t1=100; // F t2=0; // F T1abs=100+460; // R T2abs=460; //R delt=t1-t2; printf("\t delt is : %.f F \n",delt); hc=0.3*(delt^0.25); // convection loss, Btu/(hr)*(ft^2)*(°F) printf("\t convection loss is : %.2f Btu/(hr)(ft^2)(F) \n",hc); e=0.8; // emissivity hr=((0.173*e*((T1abs/100)^4-(T2abs/100)^4))/(T1abs-T2abs)); // radiation rate, from 4.32, Btu/(hr)(ft^2)(F) printf("\t radiation loss is : %.2f Btu/(hr)(ft^2)(F) \n",hr); hl=hc+hr; // combined loss, Btu/(hr)(ft^2)(F) printf("\t combined loss is : %.1f Btu/(hr)(ft^2)(F) \n",hl); D=5; // ft L=12; // ft A1=((2*3.14*D^2)/(4))+(3.14*D*L); // total tank area printf("\t total tank area is : %.1f ft^2 \n",A1); Q=(hl*A1*delt); // total heat loss printf("\t total heat loss : %.2e Btu/hr \n",Q); printf("\t This heat must be supplied by the pipe bundle,Assuming exhaust steam to be at 212°F \n"); d0=1.32; X=(delt/d0); tf=((t1+212)/2); // F printf("\t X is : %.0f \n",X); printf("\t tf is : %.0f F \n",tf); hio=48; // from fig 10.4, Btu/(hr)(ft^2)(F) ho=1500; // condensation of steam,Btu/(hr)(ft^2)(F) Uc=((hio)*(ho)/(hio+ho)); // clean overall coefficient,Btu/(hr)*(ft^2)*(F) printf("\t clean overall coefficient is : %.1f Btu/(hr)*(ft^2)*(F) \n",Uc); Rd=0.02; // dirt factor, (hr)(ft^2)(F)/Btu UD=((Uc)/((1)+(Uc*Rd))); // design overall coefficient,Btu/(hr)*(ft^2)*(F) printf("\t design overall coefficient is : %.1f Btu/(hr)*(ft^2)*(F) \n",UD); A2=((Q)/((UD)*(212-100))); // total surface,ft^2 printf("\t total surface is : %.1f ft^2 \n",A2); A3=2.06; // area/pipe N=(A2/A3); printf("\t number of pipes are : %.0f \n",N); //end