// Exa 3.28 format('v',7); clc; clear; close; // Given data V_B= 0;// in V R_E=1*10^3;//in Ω R_C=1*10^3;//in Ω V_CC=5;// in V V_BE= 0.7;// in V V_E= V_B-V_BE;// in V I_E= (1+V_E)/R_E;// in A I_C= I_E;// (approx) in A V_C= V_CC-I_C*R_C;//in V disp("Part (i)") disp(V_E,"The value of V_E in volt is : "); disp(V_C,"The value of V_C in volt is : "); // For saturation V_CE=0.2 ;// V V_CB= -0.5;// in V // I_C= 5-V_C/R_C and V_C= V_E-VCE, So // I_C= (5.2-V_E)/R_C // I_E= (V_E+1)/R_E and at the edge of saturation I_C=I_E, V_E= 4.2/2;/// in V V_B= V_E+0.7;// in V V_C= V_E+0.2;// in V disp("Part (ii) ") disp(V_E,"The value of V_E in volts is : "); disp(V_B,"The value of V_B in volts is : "); disp(V_C,"The value of V_C in volts is : "); // Note: In the book , there is a miss print in the last line of this question because V_E+0.2= 2.1+0.2 = 2.3 (not 2.8) , so answer in the book is wrong