clc; eff_c=0.82; // Isentropic efficency of the compressor eff_T=0.85; // Isentropic efficency of the turbine eff_m=0.99; // Mechanical transmission efficiency rp=7; // Pressure ratio T03=1000; // Maximum cycle temperature in kelvin eff_comb=0.97; // Combustion efficiency CV=43.1; // Calorific value in MJ/kg ma=20; // Air mass flow rate in kg/s eff_reg=0.75; // Regenerator effectiveness del_P=0.1; // Regenerator gas side pressure loss in bar T01=327; // Ambient temperature in kelvin p01=1; // Ambient pressure in bar Cpa=1.005;// Specific heat of air at constant pressure in kJ/kg K Cpg=1.147;// Specific heat of fuel at constant pressure in kJ/kg K rg=1.33;// Specific heat ratio of fuel r=1.4; // Specific heat ratio of air //(i).With Regeneration and pressure loss T_02=T01*(rp)^((r-1)/r); T02=T01+(T_02-T01)/eff_c; p04=p01+del_P; p03=rp/p01; T_04=T03*(p04/p03)^((rg-1)/rg); T04_1=T03-eff_T*(T03-T_04); T05=T02+eff_reg*(T04_1-T02); mf1=(ma*Cpg*(T03-T05))/(CV*10^3*eff_comb); // By neglecting the effect of change in mass flow rate due to mf in combustion chamber p03_p04_1=p03/p04; WT1=(ma+mf1)*Cpg*(T03-T04_1); // Turbine work WN1=(ma+mf1)*Cpg*(T03-T04_1)-(ma*Cpa*(T02-T01)/eff_m); // Net work output sfc1=mf1*3600/WN1; // Specifc fuel consumption eff_th1=WN1/(mf1*CV*10^3); // Thermal efficiency //(ii).Without Regenerator and without pressure loss p04=p01; T_04=T03*(p04/p03)^((rg-1)/rg); T04_2=T03-eff_T*(T03-T_04); mf2=(ma*Cpg*(T03-T02))/(CV*10^3*eff_comb); WT2=(ma*Cpg*(T03-T04_2)); WN2=(ma*Cpg*(T03-T04_2))-(ma*Cpa*(T02-T01)/eff_m); // Net work output p03_p04_2=p03/p04; sfc2=mf2*3600/WN2; // Specific fuel consumption eff_th2=WN2/(mf2*CV*10^3); // Thermal efficiency //(iii).With Regenerator and without pressure loss T_02=T01*(rp)^((r-1)/r); T02=T01+(T_02-T01)/eff_c; p04=p01; p03=rp/p01; T_04=T03*(p04/p03)^((rg-1)/rg); T04_3=T03-eff_T*(T03-T_04); T05=T02+eff_reg*(T04_3-T02); WT3=(ma*Cpg*(T03-T05)); mf3=(ma*Cpg*(T03-T05))/(CV*10^3*eff_comb); // By neglecting the effect of change in mass flow rate due to mf in combustion chamber p03_p04_3=p03/p04; WN3=(ma+mf3)*Cpg*(T03-T04_3)-(ma*Cpa*(T02-T01)/eff_m); // Net work output sfc3=mf3*3600/WN3; // Specifc fuel consumption eff_th3=WN3/(mf3*CV*10^3); // Thermal efficiency printf("Quantities \t\t\t \t\tRegenerator \t\t\t\t\t\t Without"); printf ("\n\t\t\t\twith Del_P\t\twithout Del_P\t\t\t\tregenerator and Del_P"); printf ("\n\t\t\t\t(roundoff error)\t(roundoff error)\t\t\t(roundoff error)"); printf("\n\n P03/P04\t\t\t%f\t\t%f\t\t\t\t\t%f",p03_p04_1,p03_p04_3,p03_p04_2); printf ("\n\nT04 (K)\t\t\t\t%f\t\t%f\t\t\t\t\t%f",T04_1,T04_3,T04_2); printf ("\n\nmf (kg/s)\t\t\t%f\t\t%f\t\t\t\t\t%f",mf1,mf3,mf2); printf ("\n\nWT (kW)\t\t\t\t%f\t\t%f\t\t\t\t\t%f",WT1,WT3,WT2); printf ("\n\nsfc (kg/kW h)\t\t\t%f\t\t%f\t\t\t\t\t%f",sfc1,sfc3,sfc2); printf ("\n\nefficiency (in percentage)\t%f\t\t%f\t\t\t\t\t%f",eff_th1*100,eff_th3*100,eff_th2*100); printf ("\n\nAs can be seen from the table that pressure loss plays a major role in the efficiency than the regenerator. \n\nHence,more care should be taken in the design to have minimum pressure loss.");