clc; p01=1; // Air inlet pressure in bar T01=7+273;// Air inlet temperature in kelvin p02=4; // Pressure at state 2 in bar eff_c=0.82;// Isentropic efficiency of compressor T03=800+273; // Maximum temperature at the turbine inlet in kelvin eff_T=0.85; // Isentropic efficiency of the turbine CV=43.1; // calorific value of fuel in MJ/kg Cpa=1.005;// Specific heat of air at constant pressure in kJ/kg K Cpg=1.147;// Specific heat of fuel at constant pressure in kJ/kg K rg=1.33;// Specific heat ratio of fuel r=1.4; // Specific heat ratio of air LS=0.85; mf=1; // Let assume mass of fuel to be 1 kg T_02=T01*(p02/p01)^((r-1)/r); // from T-S diagram T02=T01+(T_02-T01)/eff_c; // Temperature after compression Wc=Cpa*(T02-T01); // Work of compression Q=Cpg*(T03-T02); // Heat supplied p04=p01;p03=p02; T_04=T03*(p04/p03)^((rg-1)/rg); T04=T03-eff_T*(T03-T_04); WT=Cpg*(T03-T04); // Turbine work WN=WT-Wc; // Net work done eff_th=WN/(Q/LS); // The thermal efficiency ma_mf=(LS*CV*10^3/Q)-1; // AIR FUEL ratio ma=mf*ma_mf; sfc=(3600/(ma_mf*WN)); // specific fuel consumption Wc_WT=(Wc*ma)/(WT*(ma+mf)); // work ratio disp ("kJ/kg of air",Wc,"(i).Compressor work = "); disp ("kJ/kg of air",Q,"(ii).Heat supplied = "); disp ("kJ/kg of air",WT,"(iii).Turbine work = "); disp ("kJ/kg of air",WN,"(iv).Net work = "); disp ("%",eff_th*100,"(v).Thermal Efficiency = "); disp (ma_mf,"(vi).Air/Fuel ratio = ") disp ("kg/kWh",sfc,"(vii).Specific fuel consumption ="); disp (Wc_WT,"(viii).Ratio of compressor work to turbine work = ");