clc; p1=1; // Pressure at state 1 in bar T1=300; // Temperature at state 1 in kelvin p4=5; // Pressure at state 4 in bar T5=1250; // Temperature at state 5 in kelvin Cp=1.005; // Specific heat at constant pressure in kJ/kg K r=1.4; // Specific heat ratio rp=p4/p1; // pressure ratio p2=sqrt (rp); // Because of perfect intercooling c1=p2^((r-1)/r); T2=T1*c1; // Temperature at state 2 T4=T2; T3=T1; Wc1=Cp*(T2-T1); // Work of compressor 1 Wc=2*Wc1; // net work of compressor WT1=Wc; T6=T5-(WT1/Cp); // Temperature at state 6 p5_p6=(T5/T6)^(r/(r-1)); // Pressure ratio p6=rp/p5_p6; // Pressure at state 6 p7=p1; T7=T5;p8=p6; T8=T7*(p7/p8)^((r-1)/r); // Temperature in state 8 WT2=Cp*(T7-T8); // Turbine 2 work q=Cp*(T5-T4)+Cp*(T7-T6); // Heat supplied eff=WT2/q; // Efficiency of the cycle // With regenerator T9=T8; q_withregen=Cp*((T5-T9)+(T7-T6)); // Heat supplied with regenerator eff_withregen=WT2/q_withregen; // Efficiency of the cycle with regenerator I_eff=(eff_withregen-eff)/eff_withregen; // Percentage improvement in efficiency disp ("%",eff*100,"Efficiency of the cycle = ","kJ/kg",q,"Heat supplied = ","kJ/kg",WT2,"Work of turbine = ","(i). Without regenerator "); disp ("%",eff_withregen*100,"Efficiency of the cycle = ","kJ/kg (roundoff error)",q_withregen,"Heat supplied = ","(ii). With regenerator" ); disp ("%",I_eff*100,"Percentage improvement in efficiency = ");