clc; P01=4.6; // Total head inlet pressure in bar T01=700+273.15; // Total head inlet temperature in kelvin P2=1.6; // Static head pressure at mean radius in bar Dm_h=10; // Mean blade diameter/blade height lc=0.1; // Nozzle losses coefficient alpha_2=60; // Nozzle outlet angle in degree Cp=1.147; // Specific heat in kJ/kg K r=1.33; // Specific heat ratio m=20; // Mass flow rate in kg/s R=284.6; // characteristic gas constant in J/kg K T_2=T01*(P2/P01)^((r-1)/r); // Isentropic temperature after expansion T2=(lc*T01+T_2)/(1+lc); // Actual temperature after expansion c2=sqrt(2*Cp*10^3*(T01-T2)); // Absolute velocity // From velocity triangles ca=c2*cosd(alpha_2); row=P2*10^5/(R*T2); // Density of gas A=m/(ca*row); // Area Dm=sqrt (A*Dm_h/3.14); // Mean Diameter h=Dm/10; // Blade height rm=Dm/2; // Mean radius // At root r_root=(Dm-h)/2; //At the tip r_tip=(Dm+h)/2; // Free vorte flow ct_mean=c2*sind (alpha_2); // At the root ct2_root=(ct_mean*rm)/r_root; alpha2_root=atand(ct2_root/ca); c2_root=ct2_root/sind (alpha2_root); T2_root=T01-c2_root^2/(2*Cp*10^3); // At the tip ct2_tip=ct_mean*rm/r_tip; alpha2_tip = atand (ct2_tip/ca); c2_tip=ct2_tip/sind(alpha2_tip); T2_tip=T01-c2_tip^2/(2*Cp*10^3); disp ("degree",alpha2_root,"Discharge angle at the root = ","m/s",c2_root,"Gas velocity at the root = ","K",T2_root,"Gas Temperature at the root = ","A the Root"); disp ("degree",alpha2_tip,"Discharge angle at the tip = ","m/s",c2_tip,"Gas velocity at the tip = ","K",T2_tip,"Gas Temperature at the tip = ","A the tip");