//Optical Fiber communication by A selvarajan //example 11.2 //OS=Windows XP sp3 //Scilab version 5.5.1 clc; clear all; BW=7//bandwidth in MHz SNR=60//signal to noise ratio in dB Pin=0//Launched power in dBm Trise_source=4//risetime at source LED in ns delta_lambda=1//spectra width in nm lambda=1300;//operating wavelength in nm c=2.998*10^5;//velocity of light in Km/sec R=0.3//Detector PIN FET responsivity in A/W Cdiode=3//diode capacitance in pf trise_detector=5//risetime at detector in ns F=2.1//amplifier noise figure in dB Camp=2//amplifier capacitance in pf L=2//minimum link length in Km Lsplice=0.5//splice loss in dB/connector NA=0.22//numerical aperture for GI/MM BWGI=600//GI/MM fiber bandwidth in MHz F3dB_optical Te=630//temperate in Kelvin K=1.38064852 *10-23//boltzman constant in m2 kg s-2 K-1 //solution Rload=1/(2*%pi*(Cdiode+Camp)*BW)*10^6//maximum load resistance in ohm Actual value Rload=4300//approximated value in ohm BWRx=1/(2*%pi*(Cdiode+Camp)*Rload)//receiver BW in Hz SbyN=10^(SNR/10)//SNR in normal scale Pmin=10*log10(sqrt(SbyN*4*K*Te*BW/(0.5*Rload*R^2)))//input power in W L1=Pmin/0.2//power budget limited link length in Km mprintf('Maximum permissible link length is =%fKm',L1); Trise_required=(0.35/BW)*10^3//Bandwith budgetting rise time required is rise time required in ns//multiplication by 10^3 to convert msec to ns Trise_receiver=2.19*Rload*(Cdiode+Camp)*10^-3//rise time of receiver in ns//multiplication by 10^3 to convert msec to ns Trise_fiber=sqrt(Trise_required^2-Trise_receiver^2-Trise_source^2)//fiber dispersion in ns //for GI f3dB_electrical=0.71*BWGI;//3dB elctrical BW in MHzKm t_intra_modal=1//intra modal dispersion in ns/Km t_inter_modal=3//intermodal dispersion in ns/Km t_fiber_GI=sqrt(t_intra_modal^2+t_inter_modal^2);//rise time of fiber in ns/Km L2=Trise_fiber/t_fiber_GI//link length in Km mprintf('\n Maximum permissible link length for GI is =%fKm',L2);