// A Texbook on POWER SYSTEM ENGINEERING // A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar // DHANPAT RAI & Co. // SECOND EDITION // PART II : TRANSMISSION AND DISTRIBUTION // CHAPTER 2: CONSTANTS OF OVERHEAD TRANSMISSION LINES // EXAMPLE : 2.13 : // Page number 110 clear ; clc ; close ; // Clear the work space and console // Given data D_a_a = 0.9 // Self GMD of conductor a(cm) D_a_aa = 40.0 // Distance between conductor a & a'(cm) D_a_b = 1000.0 // Distance between conductor a & b(cm) D_a_bb = 1040.0 // Distance between conductor a & b'(cm) D_aa_b = 960.0 // Distance between conductor a' & b(cm) D_c_a = 2000.0 // Distance between conductor a & c(cm) D_c_aa = 1960.0 // Distance between conductor a' & c(cm) D_cc_a = 2040.0 // Distance between conductor a & c'(cm) // Calculations D_aa_aa = D_a_a // Self GMD of conductor a'(cm) D_aa_a = D_a_aa // Distance between conductor a' & a(cm) D_s1 = (D_a_a*D_a_aa*D_aa_aa*D_aa_a)**(1.0/4) // Self GMD in position 1(cm) D_s2 = D_s1 // Self GMD in position 2(cm) D_s3 = D_s1 // Self GMD in position 3(cm) D_s = (D_s1*D_s2*D_s3)**(1.0/3) // Equivalent self GMD(cm) D_aa_bb = D_a_b // Distance between conductor a' & b'(cm) D_AB = (D_a_b*D_a_bb*D_aa_b*D_aa_bb)**(1.0/4) // Mutual GMD(cm) D_BC = D_AB // Mutual GMD(cm) D_cc_aa = D_c_a // Distance between conductor a' & c'(cm) D_CA = (D_c_a*D_c_aa*D_cc_a*D_cc_aa)**(1.0/4) // Mutual GMD(cm) D_m = (D_AB*D_BC*D_CA)**(1.0/3) // Equivalent Mutual GMD(cm) L = 0.2*log(D_m/D_s) // Inductance per phase(mH/km) // Results disp("PART II - EXAMPLE : 2.13 : SOLUTION :-") printf("\nInductance per phase, L = %.3f mH/km", L)