// A Texbook on POWER SYSTEM ENGINEERING // A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar // DHANPAT RAI & Co. // SECOND EDITION // PART I : GENERATION // CHAPTER 7: TARIFFS AND ECONOMIC ASPECTS IN POWER GENERATION // EXAMPLE : 7.24 : // Page number 84 clear ; clc ; close ; // Clear the work space and console // Given data cap_installed = 30.0*10**3 // Rating of each generators(kW) no = 4.0 // Number of installed generators MD = 100.0*10**3 // Maximum demand(kW) LF = 0.8 // Load factor cost_capital_kW = 800.0 // Capital cost per kW installed capacity(Rs) depreciation_per = 0.125 // Depreciation,etc = 12.5% of capital cost cost_operation = 1.2*10**6 // Annual operation cost(Rs) cost_maintenance = 600000.0 // Annual maintenance cost(Rs) fixed_maintenance = 1.0/3 // Fixed cost variable_maintenance = 2.0/3 // Variable cost cost_miscellaneous = 100000.0 // Miscellaneous cost(Rs) cost_fuel_kg = 32.0/1000 // Cost of fuel oil(Rs/kg) calorific = 6400.0 // Calorific value of fuel(kcal/kg) n_gen = 0.96 // Generator efficiency n_thermal = 0.28 // Thermal efficiency of turbine n_boiler = 0.75 // Boiler efficiency n_overall = 0.2 // Overall thermal efficiency // Calculations // Case(a) rating_turbine = cap_installed/(n_gen*0.736) // Rating of each steam turbine(metric hp) // Case(b) avg_demand_B = LF*MD // Average demand(kW) hours_year = 365.0*24 // Total hours in a year energy_B = avg_demand_B*hours_year // Annual energy produced(kWh) // Case(c) steam_consumption_C = (0.8+3.5*LF)/LF // Average steam consumption(kg/kWh) // Case(d) LF_D = 1.0 // Assumption that Load factor for boiler steam_consumption_D = (0.8+3.5*LF_D)/LF_D // Steam consumption(kg/kWh) energy_D = cap_installed*1.0 // Energy output per hour per set(kWh) evaporation_cap = steam_consumption_D*energy_D // Evaporation capacity of boiler(kg/hr) // Case(e) total_invest = no*cap_installed*cost_capital_kW // Total investment(Rs) capital_cost = depreciation_per*total_invest // Capital cost(Rs) maintenance_cost = fixed_maintenance*cost_maintenance // Maintenance cost(Rs) fixed_cost_total = capital_cost+maintenance_cost // Total fixed cost per annum(Rs) var_maintenance_cost = variable_maintenance*cost_maintenance // Variable part of maintenance cost(Rs) input_E = energy_B/n_overall // Input into system per annum(kWh) weight_fuel = input_E*860/calorific // Weight of fuel(kg) cost_fuel = weight_fuel*cost_fuel_kg // Cost of fuel(Rs) variable_cost_total = cost_operation+var_maintenance_cost+cost_miscellaneous+cost_fuel // Total variable cost per annum(Rs) cost_total_E = fixed_cost_total+variable_cost_total // Total cost per annum(Rs) cost_kWh_gen = cost_total_E/energy_B*100 // Cost per kWh generated(Paise) // Results disp("PART I - EXAMPLE : 7.24 : SOLUTION :-") printf("\nCase(a): Rating of each steam turbine = %.f metric hp", rating_turbine) printf("\nCase(b): Energy produced per annum = %.3e kWh", energy_B) printf("\nCase(c): Average steam consumption per kWh = %.1f kg/kWh", steam_consumption_C) printf("\nCase(d): Evaporation capacity of boiler = %.f kg/hr", evaporation_cap) printf("\nCase(e): Total fixed cost = Rs %.2e ", fixed_cost_total) printf("\n Total variable cost = Rs %.2e ", variable_cost_total) printf("\n Cost per kWh generated = %.2f paise\n", cost_kWh_gen) printf("\nNOTE: Changes in obtained answer from that of textbook answer is due to more precision here')