// A Texbook on POWER SYSTEM ENGINEERING // A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar // DHANPAT RAI & Co. // SECOND EDITION // PART IV : UTILIZATION AND TRACTION // CHAPTER 8: BRAKING // EXAMPLE : 8.4 : // Page number 810 clear ; clc ; close ; // Clear the work space and console // Given data W = 355.0 // Weight of train(tonne) V_1 = 80.5 // Speed(km/hr) V_2 = 48.3 // Speed(km/hr) D = 1.525 // Distance(km) G = 100.0/90 // Gradient(%) I = 10.0 // Rotational inertia(%) r = 53.0 // Tractive resistance(N/tonne) n = 0.8 // Overall efficiency // Calculations beta = (V_1**2-V_2**2)/(2*D*3600) // Braking retardation(km phps) W_e = W*(100+I)/100 // Accelerating weight of train(tonne) F_t = 277.8*W_e*beta+98.1*W*G-W*r // Tractive effort(N) work_done = F_t*D*1000 // Work done by this effort(N-m) energy = work_done*n/(1000*3600) // Energy returned to line(kWh) // Results disp("PART IV - EXAMPLE : 8.4 : SOLUTION :-") printf("\nEnergy returned to the line = %.1f kWh", energy)