// A Texbook on POWER SYSTEM ENGINEERING // A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar // DHANPAT RAI & Co. // SECOND EDITION // PART IV : UTILIZATION AND TRACTION // CHAPTER 5: ELECTRIC TRACTION-SPEED TIME CURVES AND MECHANICS OF TRAIN MOVEMENT // EXAMPLE : 5.5 : // Page number 781-782 clear ; clc ; close ; // Clear the work space and console // Given data r = 1.0 // Tractive resistance(N/tonne) // Calculations tractive_res_i = 0.278*r // Tractive resistance(N/tonne) = Energy consumption(Wh/tonne-km) beta = 1/277.8 // Tractive resistance(N/tonne) = Retardation(km kmps/tonne) energy = 98.1*1000/3600 // 1% gradient = energy(Wh per tonne km) // Results disp("PART IV - EXAMPLE : 5.5 : SOLUTION :-") printf("\nCase(i) : Tractive resistance of 1 N per tonne = %.3f Wh per tonne-km", tractive_res_i) printf("\nCase(ii) : Tractive resistance of 1 N per tonne = %.5f km phps per tonne", beta) printf("\nCase(iii): 1 percent gradient = %.2f Wh per tonne km\n", energy) printf("\nNOTE: Slight change in the obtained answer from that of textbook is due to more precision here")