// A Texbook on POWER SYSTEM ENGINEERING // A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar // DHANPAT RAI & Co. // SECOND EDITION // PART IV : UTILIZATION AND TRACTION // CHAPTER 5: ELECTRIC TRACTION-SPEED TIME CURVES AND MECHANICS OF TRAIN MOVEMENT // EXAMPLE : 5.4 : // Page number 779 clear ; clc ; close ; // Clear the work space and console // Given data D = 2.0 // Distance between 2 stations(km) V_a = 40.0 // Average speed(kmph) V_1 = 60.0 // Maximum speed limitation(kph) alpha = 2.0 // Acceleration(km phps) beta_c = 0.15 // Coasting retardation(km phps) beta = 3.0 // Braking retardation(km phps) // Calculations t_1 = V_1/alpha // Time for acceleration(sec) T = 3600*D/V_a // Actual time of run(sec) V_2 = (T-t_1-(V_1/beta_c))*beta*beta_c/(beta_c-beta) // Speed at the end of coasting period(kmph) t_2 = (V_1-V_2)/beta_c // Coasting period(sec) t_3 = V_2/beta // Braking period(sec) // Results disp("PART IV - EXAMPLE : 5.4 : SOLUTION :-") printf("\nDuration of acceleration, t_1 = %.f sec", t_1) printf("\nDuration of coasting, t_2 = %.f sec", t_2) printf("\nDuration of braking, t_3 = %.f sec", t_3)