// A Texbook on POWER SYSTEM ENGINEERING // A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar // DHANPAT RAI & Co. // SECOND EDITION // PART IV : UTILIZATION AND TRACTION // CHAPTER 2: HEATING AND WELDING // EXAMPLE : 2.6 : // Page number 732 clear ; clc ; close ; // Clear the work space and console // Given data l = 10.0 // Length of material(cm) b = 10.0 // Breadth of material(cm) t = 3.0 // Thickness of material(cm) f = 20.0*10**6 // Frequency(Hz) P = 400.0 // Power absorbed(W) e_r = 5.0 // Relative permittivity PF = 0.05 // Power factor // Calculations e_0 = 8.854*10**-12 // Absolute permittivity A = l*b*10**-4 // Area(Sq.m) C = e_0*e_r*A/(t/100) // Capacitace of parallel plate condenser(F) X_c = 1.0/(2*%pi*f*C) // Reactance of condenser(ohm) phi = acosd(PF) // Φ(°) R = X_c*tand(phi) // Resistance of condenser(ohm) V = (P*R)**0.5 // Voltage necessary for heating(V) I_c = V/X_c // Current flowing in the material(A) // Results disp("PART IV - EXAMPLE : 2.6 : SOLUTION :-") printf("\nVoltage necessary for heating, V = %.f V", V) printf("\nCurrent flowing in the material, I_c = %.2f A\n", I_c) printf("\nNOTE: Changes in the obtained answer from that of textbook is due to more precision here & approximation in textbook")