// A Texbook on POWER SYSTEM ENGINEERING // A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar // DHANPAT RAI & Co. // SECOND EDITION // PART III : SWITCHGEAR AND PROTECTION // CHAPTER 3: SYMMETRICAL COMPONENTS' ANALYSIS // EXAMPLE : 3.5 : // Page number 490-491 clear ; clc ; close ; // Clear the work space and console // Given data E_a = 100.0 // Line to line voltage(V) E_b = 150.0 // Line to line voltage(V) E_c = 200.0 // Line to line voltage(V) // Calculations e_A = 1.0 // 100 V = 1 unit e_B = 1.5 // 150 V = 1 unit e_C = 2.0 // 200 V = 1 unit cos_alpha = (e_C**2-e_A-e_B**2)/(2*e_B) alpha = acosd(cos_alpha) // angle(°) cos_beta = (e_A+e_B*cos_alpha)/e_C beta = acosd(cos_beta) // angle(°) E_A = E_a*exp(%i*180.0*%pi/180) // Voltage(V) E_B = E_b*exp(%i*(180.0-alpha)*%pi/180) // Voltage(V) E_C = E_c*exp(%i*-beta*%pi/180) // Voltage(V) a = exp(%i*120.0*%pi/180) // Operator E_A0 = 1.0/3*(E_A+E_B+E_C) // Zero sequence voltage(V) E_A1 = 1.0/3*(E_A+a*E_B+a**2*E_C) // Positive sequence delta voltage(V) E_A1_mag = abs(E_A1) // Magnitude of positive sequence delta voltage(V) E_a1 = -%i/3**0.5*E_A1 // Positive sequence star voltage(V) E_a1_mag = abs(E_a1) // Magnitude of positive sequence star voltage(V) E_A2 = 1.0/3*(E_A+a**2*E_B+a*E_C) // Negative sequence delta voltage(V) E_A2_mag = abs(E_A2) // Magnitude of negative sequence delta voltage(V) E_a2 = %i/3**0.5*E_A2 // Negative sequence star voltage(V) E_a2_mag = abs(E_a2) // Magnitude of negative sequence star voltage(V) // Results disp("PART III - EXAMPLE : 3.5 : SOLUTION :-") printf("\nMagnitude of positive sequence delta voltage, |E_A1| = %.f V", E_A1_mag) printf("\nMagnitude of positive sequence star voltage, |E_a1| = %.1f V", E_a1_mag) printf("\nMagnitude of negative sequence delta voltage, |E_A2| = %.f V", E_A2_mag) printf("\nMagnitude of negative sequence star voltage, |E_a2| = %.f V", E_a2_mag)