// A Texbook on POWER SYSTEM ENGINEERING // A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar // DHANPAT RAI & Co. // SECOND EDITION // PART III : SWITCHGEAR AND PROTECTION // CHAPTER 3: SYMMETRICAL COMPONENTS' ANALYSIS // EXAMPLE : 3.10 : // Page number 494 clear ; clc ; close ; // Clear the work space and console // Given data R = 20000.0 // Resistance of voltmeter(ohm) E_R = 100.0 // Line-to-neutral voltage(A) E_Y = 200.0*exp(%i*270.0*%pi/180) // Line-to-neutral voltage(A) E_B = 100.0*exp(%i*120.0*%pi/180) // Line-to-neutral voltage(A) // Calculations a = exp(%i*120.0*%pi/180) // Operator V_R0 = 1.0/3*(E_R+E_Y+E_B) // Zero sequence voltage(V) V_R1 = 1.0/3*(E_R+a*E_Y+a**2*E_B) // Positive sequence voltage(V) V_R2 = 1.0/3*(E_R+a**2*E_Y+a*E_B) // Negative sequence voltage(V) I_R1 = V_R1/R // Positive sequence current(A) I_R2 = V_R2/R // Negative sequence current(A) V_Y1 = a**2*V_R1 // Positive sequence voltage of line Y(V) V_Y2 = a*V_R2 // Negative sequence voltage of line Y(V) V_Y = V_Y1+V_Y2 // Voltmeter reading connected to the yellow line(V) I_Y = abs(V_Y)/R*1000 // Current through voltmeter(mA) // Results disp("PART III - EXAMPLE : 3.10 : SOLUTION :-") printf("\nVoltmeter reading connected to the yellow line, |V_Y| = %.1f V", abs(V_Y)) printf("\nCurrent through voltmeter, I_Y = %.3f mA \n", I_Y) printf("\nNOTE: Changes in the obtained answer from that of textbook is due to more precision here")