// A Texbook on POWER SYSTEM ENGINEERING // A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar // DHANPAT RAI & Co. // SECOND EDITION // PART III : SWITCHGEAR AND PROTECTION // CHAPTER 2: FAULT LIMITING REACTORS // EXAMPLE : 2.1 : // Page number 479-480 clear ; clc ; close ; // Clear the work space and console // Given data kVA_A = 2500.0 // Rating of alternator A(kVA) x_A = 8.0 // Reactance of alternator A(%) kVA_B = 5000.0 // Rating of alternator B(kVA) x_B = 6.0 // Reactance of alternator B(%) kVA_CB = 150000.0 // Rating of circuit breaker(kVA) kVA_T = 10000.0 // Rating of transformer(kVA) x_T = 7.5 // Reactance of transformer(%) V = 3300.0 // System voltage(V) // Calculations kVA_base = 10000.0 // Base kVA X_A = kVA_base/kVA_A*x_A // Reactance of generator A(%) X_B = kVA_base/kVA_B*x_B // Reactance of generator B(%) X_eq = X_A*X_B/(X_A+X_B) // Combined reactance of A & B(%) kVA_SC_G = kVA_base/X_eq*100 // Short-circuit kVA due to generators(kVA) kVA_SC_T = kVA_base/x_T*100 // Short-circuit kVA due to grid supply(kVA) X = (kVA_base*100/(kVA_CB-kVA_SC_G))-x_T // Reactance necessary to protect switchgear(%) I_fl = kVA_base*1000/(3**0.5*V) // Full load current corresponding to 10000 kVA(A) X_phase = X*V/(3**0.5*I_fl*100) // Actual value of reactance per phase(ohm) // Results disp("PART III - EXAMPLE : 2.1 : SOLUTION :-") printf("\nReactance necessary to protect the switchgear = %.3f ohm/phase", X_phase)