// A Texbook on POWER SYSTEM ENGINEERING // A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar // DHANPAT RAI & Co. // SECOND EDITION // PART III : SWITCHGEAR AND PROTECTION // CHAPTER 1: SYMMETRICAL SHORT CIRCUIT CAPACITY CALCULATIONS // EXAMPLE : 1.5 : // Page number 470-471 clear ; clc ; close ; // Clear the work space and console // Given data MVA_G1 = 100.0 // Generator rating(MVA) X_G1 = 30.0 // Reactance of generator(%) MVA_G2 = 150.0 // Generator rating(MVA) X_G2 = 20.0 // Reactance of generator(%) MVA_G3 = 200.0 // Generator rating(MVA) X_G3 = 15.0 // Reactance of generator(%) MVA_T1 = 150.0 // Transformer rating(MVA) X_T1 = 10.0 // Reactance of transformer(%) MVA_T2 = 175.0 // Transformer rating(MVA) X_T2 = 8.0 // Reactance of transformer(%) MVA_T3 = 200.0 // Transformer rating(MVA) X_T3 = 6.0 // Reactance of transformer(%) MVA_T4 = 100.0 // Transformer rating(MVA) X_T4 = 5.0 // Reactance of transformer(%) MVA_T5 = 150.0 // Transformer rating(MVA) X_T5 = 5.0 // Reactance of transformer(%) Z_L1 = complex(0.5,1.0) // Line impedance(ohm/km) L1 = 100.0 // Line length(km) Z_L2 = complex(0.4,1.2) // Line impedance(ohm/km) L2 = 50.0 // Line length(km) Z_L3 = complex(0.4,1.2) // Line impedance(ohm/km) L3 = 50.0 // Line length(km) Z_L4 = complex(0.3,1.0) // Line impedance(ohm/km) L4 = 60.0 // Line length(km) kV_L1 = 220.0 // Voltage towards line(kV) kV_L2 = 220.0 // Voltage towards line(kV) kV_L3 = 132.0 // Voltage towards line(kV) kV_L4 = 132.0 // Voltage towards line(kV) // Calculations MVA_base = 200.0 // Base rating(MVA) X_d_G1 = (MVA_base/MVA_G1)*(X_G1/100) // Reactance of generator(p.u) X_d_G2 = (MVA_base/MVA_G2)*(X_G2/100) // Reactance of generator(p.u) X_d_G3 = (MVA_base/MVA_G3)*(X_G3/100) // Reactance of generator(p.u) X_T_1 = (MVA_base/MVA_T1)*(X_T1/100) // Reactance of transformer(p.u) X_T_2 = (MVA_base/MVA_T2)*(X_T2/100) // Reactance of transformer(p.u) X_T_3 = (MVA_base/MVA_T3)*(X_T3/100) // Reactance of transformer(p.u) X_T_4 = (MVA_base/MVA_T4)*(X_T4/100) // Reactance of transformer(p.u) X_T_5 = (MVA_base/MVA_T5)*(X_T5/100) // Reactance of transformer(p.u) Z_L1_base = kV_L1**2/MVA_base // L1 base impedance(ohm) Z_L_1 = Z_L1*L1/Z_L1_base // Line impedance(p.u) Z_L2_base = kV_L2**2/MVA_base // L2 base impedance(ohm) Z_L_2 = Z_L2*L2/Z_L2_base // Line impedance(p.u) Z_L3_base = kV_L3**2/MVA_base // L3 base impedance(ohm) Z_L_3 = Z_L3*L3/Z_L3_base // Line impedance(p.u) Z_L4_base = kV_L4**2/MVA_base // L4 base impedance(ohm) Z_L_4 = Z_L4*L4/Z_L4_base // Line impedance(p.u) // Results disp("PART III - EXAMPLE : 1.5 : SOLUTION :-") printf("\np.u values of the single line diagram are as below") printf("\nGenerators p.u reactances :") printf("\n X_d_G1 = %.1f p.u", X_d_G1) printf("\n X_d_G2 = %.3f p.u", X_d_G2) printf("\n X_d_G3 = %.2f p.u", X_d_G3) printf("\nTransformers p.u reactances :") printf("\n X_T1 = %.3f p.u", X_T_1) printf("\n X_T2 = %.4f p.u", X_T_2) printf("\n X_T3 = %.2f p.u", X_T_3) printf("\n X_T4 = %.1f p.u", X_T_4) printf("\n X_T5 = %.3f p.u", X_T_5) printf("\nLines p.u impedances :") printf("\n Z_L1 = (%.3f + %.3fj) p.u", real(Z_L_1),imag(Z_L_1)) printf("\n Z_L2 = (%.3f + %.3fj) p.u", real(Z_L_2),imag(Z_L_2)) printf("\n Z_L3 = (%.3f + %.3fj) p.u", real(Z_L_3),imag(Z_L_3)) printf("\n Z_L4 = (%.3f + %.3fj) p.u \n", real(Z_L_4),imag(Z_L_4)) printf("\nNOTE: ERROR: (1). Reactance of T2 is 8 percent & not 1 percent as mentioned in the textbook problem statement") printf("\n (2). Several calculation mistakes in the textbook")