// A Texbook on POWER SYSTEM ENGINEERING // A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar // DHANPAT RAI & Co. // SECOND EDITION // PART II : TRANSMISSION AND DISTRIBUTION // CHAPTER 18: POWER DISTRIBUTION SYSTEMS // EXAMPLE : 18.1 : // Page number 437 clear ; clc ; close ; // Clear the work space and console // Given data V_A = 225.0 // Potential at point A(V) R_A = 5.0 // Resistance of line A(ohm) V_B = 210.0 // Potential at point B(V) R_B = 1.0 // Resistance of line B(ohm) V_C = 230.0 // Potential at point C(V) R_C = 1.0 // Resistance of line C(ohm) V_D = 230.0 // Potential at point D(V) R_D = 2.0 // Resistance of line D(ohm) V_E = 240.0 // Potential at point E(V) R_E = 2.0 // Resistance of line E(ohm) // Calculations V_0 = ((V_A/R_A)+(V_B/R_B)+(V_C/R_C)+(V_D/R_D)+(V_E/R_E))/((1/R_A)+(1/R_B)+(1/R_C)+(1/R_D)+(1/R_E)) // Potential at point O(V) I_A = (V_A-V_0)/R_A // Current leaving supply point A(A) I_B = (V_B-V_0)/R_B // Current leaving supply point B(A) I_C = (V_C-V_0)/R_C // Current leaving supply point C(A) I_D = (V_D-V_0)/R_D // Current leaving supply point D(A) I_E = (V_E-V_0)/R_E // Current leaving supply point E(A) // Results disp("PART II - EXAMPLE : 18.1 : SOLUTION :-") printf("\nPotential of point O, V_0 = %.f V", V_0) printf("\nCurrent leaving supply point A, I_A = %.f A", I_A) printf("\nCurrent leaving supply point B, I_B = %.f A", I_B) printf("\nCurrent leaving supply point C, I_C = %.f A", I_C) printf("\nCurrent leaving supply point D, I_D = %.2f A", I_D) printf("\nCurrent leaving supply point E, I_E = %.2f A", I_E)