// A Texbook on POWER SYSTEM ENGINEERING // A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar // DHANPAT RAI & Co. // SECOND EDITION // PART II : TRANSMISSION AND DISTRIBUTION // CHAPTER 17: ELECTRIC POWER SUPPLY SYSTEMS // EXAMPLE : 17.7 : // Page number 428 clear ; clc ; close ; // Clear the work space and console // Given data V = 110.0*10**3 // Voltage(V) l_1 = 24.0*10**6 // Load(MW) t_1 = 6.0 // Time(hours) l_2 = 8.0*10**6 // Load(MW) t_2 = 6.0 // Time(hours) l_3 = 4.0*10**6 // Load(MW) t_3 = 12.0 // Time(hours) PF = 0.8 // Lagging power factor a = poly(0,'a') // Cross-section of each conductor(Sq.cm) cost_line = 12000.0+8000*a // Cost of line including erection(Rs/km) R = 0.19/a // Resistance per km of each conductor(ohm) cost_energy = 8.0/100 // Energy cost(Rs/unit) interest_per = 0.1 // Interest & depreciation. Assumption // Calculations annual_charge = interest_per*cost_line // Total annual charge(Rs) I_1 = l_1/(3**0.5*V*PF) // Line current for load 1(A) I_2 = l_2/(3**0.5*V*PF) // Line current for load 2(A) I_3 = l_3/(3**0.5*V*PF) // Line current for load 3(A) I_2_t = I_1**2*t_1+I_2**2*t_2+I_3**2*t_3 // I^2*t annual_energy = 3.0*R*365/1000*I_2_t // Annual energy consumption on account of losses(kWh) cost_waste = annual_energy*cost_energy // Cost of energy wasted per annum(Rs) area = (2888.62809917355/800.0)**0.5 // Economical cross-section = a(Sq.cm). Simplified and taken final answer // Results disp("PART II - EXAMPLE : 17.7 : SOLUTION :-") printf("\nMost economical cross-section, a = %.2f cm^2", area)