// A Texbook on POWER SYSTEM ENGINEERING // A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar // DHANPAT RAI & Co. // SECOND EDITION // PART II : TRANSMISSION AND DISTRIBUTION // CHAPTER 10: POWER SYSTEM STABILITY // EXAMPLE : 10.6 : // Page number 272 clear ; clc ; close ; // Clear the work space and console funcprot(0) // Given data A = 0.98*exp(%i*0.3*%pi/180) // Constant B = 82.5*exp(%i*76.0*%pi/180) // Constant(ohm) C = 0.0005*exp(%i*90.0*%pi/180) // Constant(mho) D = A // Constant V_S = 110.0 // Sending end voltage(kV) V_R = 110.0 // Receiving end voltage(kV) // Calculations alpha = phasemag(A) // α(°) beta = phasemag(B) // β(°) P_max = (V_S*V_R/abs(B))-(abs(A)*V_R**2/abs(B)*cosd((beta-alpha))) // Maximum power transfer(MW) B_new = abs(B)*sind(beta) // Constant(ohm) beta_new = 90.0 // β(°) P_max_new = (V_S*V_R/B_new)-(V_R**2/B_new*cosd(beta_new)) // Maximum power transfer(MW) // Results disp("PART II - EXAMPLE : 10.6 : SOLUTION :-") printf("\nSteady state stability limit, P_max = %.2f MW", P_max) printf("\nSteady state stability limit if shunt admittance is zero & series resistance neglected, P_max = %.2f MW \n", P_max_new) printf("\nNOTE: Changes in the obtained answer from that of textbook is due to precision")