// A Texbook on POWER SYSTEM ENGINEERING // A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar // DHANPAT RAI & Co. // SECOND EDITION // PART II : TRANSMISSION AND DISTRIBUTION // CHAPTER 10: POWER SYSTEM STABILITY // EXAMPLE : 10.5 : // Page number 271-272 clear ; clc ; close ; // Clear the work space and console // Given data V_A = 1.0 // Voltage at bus A(p.u) Z_AB = %i*0.5 // Impedance(p.u) S_DA = 1.0 // p.u S_DB = 1.0 // p.u V_B = 1.0 // Voltage at bus B(p.u) // Calculations // Case(i) & (ii) X = abs(Z_AB) // Reactance(p.u) sin_delta = 1.0*X/(V_A*V_B) // Sin δ delta = asind(sin_delta) // δ(°) V_2 = V_B V_1 = V_A Q_gB = (V_2**2/X)-(V_2*V_1*cosd(delta)/X) // Case(iii) V_2_3 = 1/2.0**0.5 // Solving quadratic equation from textbook delta_3 = acosd(V_2_3) // δ(°) // Results disp("PART II - EXAMPLE : 10.5 : SOLUTION :-") printf("\nCase(i) : Q_gB = %.3f", Q_gB) printf("\nCase(ii) : Phase angle of V_B, δ = %.f° ", delta) printf("\nCase(iii): If Q_gB is equal to zero then amount of power transmitted is, V_2 = %.3f∠%.f° ", V_2_3,delta_3)