// A Texbook on POWER SYSTEM ENGINEERING // A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar // DHANPAT RAI & Co. // SECOND EDITION // PART II : TRANSMISSION AND DISTRIBUTION // CHAPTER 10: POWER SYSTEM STABILITY // EXAMPLE : 10.3 : // Page number 270-271 clear ; clc ; close ; // Clear the work space and console // Given data E_1 = 1.25 // Sending end voltage(p.u) x_d = 1.0 // Reactance(p.u) x_T1 = 0.2 // Reactance(p.u) x_l1 = 1.0 // Reactance(p.u) x_l2 = 1.0 // Reactance(p.u) x_T2 = 0.2 // Reactance(p.u) E_2 = 1.0 // Receiving end voltage(p.u) x_L = 1.0 // Shunt inductor reactance(p.u) x_C = 1.0 // Shunt capacitor reactance(p.u) // Calculations // Case(a) Z_1_a = x_d+x_T1+(x_l1/2.0) // Reactance(p.u) Z_2_a = x_T2+x_d // Reactance(p.u) Z_3_a = x_L // Reactance(p.u) Z_a = Z_1_a+Z_2_a+(Z_1_a*Z_2_a/Z_3_a) // Transfer reactance(p.u) P_max_1 = E_1*E_2/Z_a // Maximum power transfer if shunt inductor is connected at bus 2(p.u) // Case(b) Z_1_b = x_d+x_T1+(x_l1/2.0) // Reactance(p.u) Z_2_b = x_T2+x_d // Reactance(p.u) Z_3_b = -x_C // Reactance(p.u) Z_b = Z_1_b+Z_2_b+(Z_1_b*Z_2_b/Z_3_b) // Transfer reactance(p.u) P_max_2 = E_1*E_2/Z_b // Maximum power transfer if shunt capacitor is connected at bus 2(p.u) // Results disp("PART II - EXAMPLE : 10.3 : SOLUTION :-") printf("\nCase(a): Maximum power transfer if shunt inductor is connected at bus 2, P_max1 = %.3f p.u", P_max_1) printf("\nCase(b): Maximum power transfer if shunt capacitor is connected at bus 2, P_max2 = %.2f p.u", P_max_2)