// A Texbook on POWER SYSTEM ENGINEERING // A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar // DHANPAT RAI & Co. // SECOND EDITION // PART II : TRANSMISSION AND DISTRIBUTION // CHAPTER 9: LOAD FLOW STUDY USING COMPUTER TECHNIQUES // EXAMPLE : 9.3 : // Page number 236-237 clear ; clc ; close ; // Clear the work space and console // Given data V_a = 1.0 // Voltage(p.u) V_b = 1.0*exp(%i*-36.87*%pi/180) // Voltage(p.u) V_c = 1.0 // Voltage(p.u) Z_1 = complex(0,1) // Reactance(p.u) Z_2 = complex(0,1) // Reactance(p.u) Z_3 = complex(0,1) // Reactance(p.u) Z_13 = complex(0,0.4) // Reactance(p.u) Z_23 = complex(0,0.4) // Reactance(p.u) Z_14 = complex(0,0.2) // Reactance(p.u) Z_24 = complex(0,0.2) // Reactance(p.u) Z_34 = complex(0,0.2) // Reactance(p.u) Z_12 = complex(0,0) // Reactance(p.u) // Calculations I_1 = V_a/Z_1 // Current injection vector(p.u) I_2 = V_b/Z_2 // Current injection vector(p.u) I_3 = V_c/Z_3 // Current injection vector(p.u) I_4 = 0.0 // Current injection vector(p.u) y1 = 1.0/Z_1 // Admittance(p.u) y2 = 1.0/Z_2 // Admittance(p.u) y3 = 1.0/Z_3 // Admittance(p.u) y13 = 1.0/Z_13 // Admittance(p.u) y23 = 1.0/Z_23 // Admittance(p.u) y14 = 1.0/Z_14 // Admittance(p.u) y24 = 1.0/Z_24 // Admittance(p.u) y34 = 1.0/Z_34 // Admittance(p.u) y12 = 0.0 // Admittance(p.u) Y_11 = y1+y13+y14 // Equivalent admittance(p.u) Y_12 = y12 // Equivalent admittance(p.u) Y_13 = -y13 // Equivalent admittance(p.u) Y_14 = -y14 // Equivalent admittance(p.u) Y_21 = Y_12 // Equivalent admittance(p.u) Y_22 = y2+y23+y24 // Equivalent admittance(p.u) Y_23 = -y23 // Equivalent admittance(p.u) Y_24 = -y24 // Equivalent admittance(p.u) Y_31 = Y_13 // Equivalent admittance(p.u) Y_32 = Y_23 // Equivalent admittance(p.u) Y_33 = y3+y13+y23+y34 // Equivalent admittance(p.u) Y_34 = -y34 // Equivalent admittance(p.u) Y_41 = Y_14 // Equivalent admittance(p.u) Y_42 = Y_24 // Equivalent admittance(p.u) Y_43 = Y_34 // Equivalent admittance(p.u) Y_44 = y14+y24+y34 // Equivalent admittance(p.u) Y_bus = [[Y_11, Y_12, Y_13, Y_14], [Y_21, Y_22, Y_23, Y_24], [Y_31, Y_32, Y_33, Y_34], [Y_41, Y_42, Y_43, Y_44]] // Bus admittance matrix I_bus = [I_1, I_2, I_3, I_4] V = inv(Y_bus)*I_bus // Bus voltage(p.u) // Results disp("PART II - EXAMPLE : 9.3 : SOLUTION :-") printf("\nVoltage at bus 1, V_1 = %.4f%.4fj p.u", real(V(1,1:1)),imag(V(1,1:1))) printf("\nVoltage at bus 2, V_2 = %.4f%.4fj p.u", real(V(2,1:1)),imag(V(2,1:1))) printf("\nVoltage at bus 3, V_3 = %.4f%.4fj p.u", real(V(3,1:1)),imag(V(3,1:1))) printf("\nVoltage at bus 4, V_4 = %.4f%.4fj p.u\n", real(V(4,1:1)),imag(V(4,1:1))) printf("\nNOTE: Node equation matrix could not be represented in a single equation. Hence, it is not displayed")