// A Texbook on POWER SYSTEM ENGINEERING // A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar // DHANPAT RAI & Co. // SECOND EDITION // PART II : TRANSMISSION AND DISTRIBUTION // CHAPTER 8: CORONA // EXAMPLE : 8.3 : // Page number 228 clear ; clc ; close ; // Clear the work space and console // Given data V = 132.0 // Operating line voltage(kV) f = 50.0 // Frequency(Hz) d = 1.17 // Diameter of conductor(cm) D = 300.0 // Distance b/w conductor(cm) m = 0.96 // Irregularity factor b = 72.0 // Barometric pressure(cm) t = 20.0 // Temperature(°C) // Calculations delta = 3.92*b/(273.0+t) // Air density factor r = d/2.0 // Radius of conductor(cm) E_0 = 21.1*m*delta*r*log(D/r) // Critical disruptive voltage for fair weather condition(kV/phase) E_0_foul = 0.8*E_0 // Critical disruptive voltage for foul weather(kV/phase) E = V/3**0.5 // Phase voltage(kV) P_fair = 244.0*10**-5*(f+25)/delta*(r/D)**0.5*(E-E_0)**2 // Corona loss for fair weather condition(kW/km/phase) P_foul = 244.0*10**-5*(f+25)/delta*(r/D)**0.5*(E-E_0_foul)**2 // Corona loss for foul weather condition(kW/km/phase) // Results disp("PART II - EXAMPLE : 8.3 : SOLUTION :-") printf("\nCorona loss in fair weather, P = %.3f kW/km/phase", P_fair) printf("\nCorona loss in foul weather, P = %.3f kW/km/phase", P_foul)