// A Texbook on POWER SYSTEM ENGINEERING // A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar // DHANPAT RAI & Co. // SECOND EDITION // PART II : TRANSMISSION AND DISTRIBUTION // CHAPTER 7: UNDERGROUND CABLES // EXAMPLE : 7.9 : // Page number 215 clear ; clc ; close ; // Clear the work space and console // Given data d = 2.5 // Conductor diameter(cm) D = 6.0 // Sheath diameter(cm) V_l = 66.0 // Line Voltage(kV) // Calculations alpha = (D/d)**(1.0/3) // α d_1 = d*alpha // Best position of first intersheath(cm) d_2 = d_1*alpha // Best position of second intersheath(cm) V = V_l/3**0.5*2**0.5 // Peak voltage on core(kV) V_2 = V/(1+(1/alpha)+(1/alpha**2)) // Peak voltage on second intersheath(kV) V_1 = (1+(1/alpha))*V_2 // Voltage on first intersheath(kV) stress_max = 2*V/(d*log(D/d)) // Maximum stress without intersheath(kV/cm) stress_min = stress_max*d/D // Minimum stress without intersheath(kV/cm) g_max = V*3/(1+alpha+alpha**2) // Maximum stress with intersheath(kV/cm) // Results disp("PART II - EXAMPLE : 7.9 : SOLUTION :-") printf("\nMaximum stress without intersheath = %.2f kV/cm", stress_max) printf("\nBest position of first intersheath, d_1 = %.2f cm", d_1) printf("\nBest position of second intersheath, d_2 = %.3f cm", d_2) printf("\nMaximum stress with intersheath = %.2f kV/cm", g_max) printf("\nVoltage on the first intersheath, V_1 = %.2f kV", V_1) printf("\nVoltage on the second intersheath, V_2 = %.2f kV \n", V_2) printf("\nNOTE: Changes in the obtained answer is due to more precision here")