// A Texbook on POWER SYSTEM ENGINEERING // A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar // DHANPAT RAI & Co. // SECOND EDITION // PART II : TRANSMISSION AND DISTRIBUTION // CHAPTER 7: UNDERGROUND CABLES // EXAMPLE : 7.16 : // Page number 222-223 clear ; clc ; close ; // Clear the work space and console // Given data V = 33.0*10**3 // Line Voltage(V) f = 50.0 // Frequency(Hz) l = 4.0 // Length(km) d = 2.5 // Diameter of conductor(cm) t = 0.5 // Radial thickness of insulation(cm) e_r = 3.0 // Relative permittivity of the dielectric PF = 0.02 // Power factor of unloaded cable // Calculations // Case(a) r = d/2.0 // Radius of conductor(cm) R = r+t // External radius(cm) e_0 = 8.85*10**-12 // Permittivity C = 2.0*%pi*e_0*e_r/log(R/r)*l*1000 // Capacitance of cable/phase(F) // Case(b) V_ph = V/3**0.5 // Phase voltage(V) I_c = V_ph*2.0*%pi*f*C // Charging current/phase(A) // Case(c) kVAR = 3.0*V_ph*I_c // Total charging kVAR // Case(d) phi = acosd(PF) // Φ(°) delta = 90.0-phi // δ(°) P_c = V_ph*I_c*sind(delta)/1000 // Dielectric loss/phase(kW) // Case(e) E_max = V_ph/(r*log(R/r)*1000) // RMS value of Maximum stress in cable(kV/cm) // Results disp("PART II - EXAMPLE : 7.16 : SOLUTION :-") printf("\nCase(a): Capacitance of the cable, C = %.3e F/phase", C) printf("\nCase(b): Charging current = %.2f A/phase", I_c) printf("\nCase(c): Total charging kVAR = %.4e kVAR", kVAR) printf("\nCase(d): Dielectric loss/phase, P_c = %.2f kW", P_c) printf("\nCase(e): Maximum stress in the cable, E_max = %.1f kV/cm (rms)", E_max)