// A Texbook on POWER SYSTEM ENGINEERING // A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar // DHANPAT RAI & Co. // SECOND EDITION // PART II : TRANSMISSION AND DISTRIBUTION // CHAPTER 3: STEADY STATE CHARACTERISTICS AND PERFORMANCE OF TRANSMISSION LINES // EXAMPLE : 3.9 : // Page number 134 clear ; clc ; close ; // Clear the work space and console // Given data f = 50.0 // Frequency(Hz) E_r = 66.0*10**3 // Line voltage at receiving end(V) l = 120.0 // Line length(km) r = 0.1 // Resistance(ohm/km/phase) x = 0.3 // Inductive reactance(ohm/km/phase) y = 0.04*10**-4 // Capacitive susceptance(S/km/phase) P_L = 10.0*10**6 // Load at receiving end(W) PF_r = 0.8 // Lagging load power factor // Calculations R = r*l // Total resistance(ohm/phase) X = x*l // Inductive reactance(ohm/phase) Y = y*l // Susceptance(mho) Z = complex(R,X) // Total impedance(ohm/phase) V_r = E_r/3**0.5 // Receiving end phase voltage(V) I_r = P_L/(3**0.5*E_r*PF_r)*exp(%i*-acos(PF_r)) // Load current(A) V_1 = V_r+I_r*(Z/2) // Voltage across capacitor(V) I_c = %i*Y*V_1 // Charging current(A) I_s = I_r+I_c // Sending end current(A) V_s = V_1+I_s*(Z/2) // Sending end voltage(V/phase) V_s_ll = 3**0.5*abs(V_s)/1000.0 // Sending end line to line voltage(kV) angle_Vr_Vs = phasemag(V_s) // Angle between V_r and V_s(°) angle_Vr_Is = phasemag(I_s) // Angle between V_r and I_s(°) angle_Vs_Is = angle_Vr_Vs-angle_Vr_Is // Angle between V_s and I_s(°) PF_s = cosd(angle_Vs_Is) // Sending end power factor P_s = 3*abs(V_s*I_s)*PF_s // Sending end power(W) n = P_L/P_s*100 // Transmission efficiency(%) // Results disp("PART II - EXAMPLE : 3.9 : SOLUTION :-") printf("\nSending end voltage, |V_s| = %.f V/phase = %.3f V (line-to-line)", abs(V_s),V_s_ll) printf("\nSending end current, |I_s| = %.2f A", abs(I_s)) printf("\nTransmission efficiency = %.2f percent \n", n) printf("\nNOTE: ERROR: Calculation mistake in finding sending end power factor") printf("\n Changes in the obtained answer from that of textbook is due to more precision")