// A Texbook on POWER SYSTEM ENGINEERING // A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar // DHANPAT RAI & Co. // SECOND EDITION // PART II : TRANSMISSION AND DISTRIBUTION // CHAPTER 3: STEADY STATE CHARACTERISTICS AND PERFORMANCE OF TRANSMISSION LINES // EXAMPLE : 3.7 : // Page number 132-133 clear ; clc ; close ; // Clear the work space and console // Given data V_s = 66.0 // Voltage(kV) f = 50.0 // Frequency(Hz) l = 150.0 // Line length(km) r = 0.25 // Resistance of each conductor(ohm/km) x = 0.5 // Inductive reactance of each conductor(ohm/km) y = 0.04*10**-4 // Capacitive admittance(s/km) // Calculations // Case(a) R = r*l // Total resistance(ohm) X = x*l // Inductive reactance(ohm) Y = y*l // Capacitive resistance(s) Y_2 = Y/2 // 1/2 of Capacitive resistance(s) // Case(b) Z = complex(R,X) // Total impedance(ohm) A = 1+(Y*exp(%i*90.0*%pi/180)*Z/2) // Line constant V_R_noload = V_s/abs(A) // Receiving end voltage at no-load(kV) // Results disp("PART II - EXAMPLE : 3.7 : SOLUTION :-") printf("\nCase(a): Total resistance, R = %.1f ohm", R) printf("\n Inductive reactance, X = %.1f ohm", X) printf("\n Capacitive resistance, Y = %.1e s", Y) printf("\n Capacitive resistance, Y/2 = %.1e s", Y_2) printf("\nCase(b): Receiving end voltage at no-load, V_R = %.2f kV", V_R_noload)