// A Texbook on POWER SYSTEM ENGINEERING // A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar // DHANPAT RAI & Co. // SECOND EDITION // PART II : TRANSMISSION AND DISTRIBUTION // CHAPTER 3: STEADY STATE CHARACTERISTICS AND PERFORMANCE OF TRANSMISSION LINES // EXAMPLE : 3.6 : // Page number 130-131 clear ; clc ; close ; // Clear the work space and console // Given data f = 50.0 // Frequency(Hz) l = 10.0 // Line length(km) Z_l = 0.5*exp(%i*60.0*%pi/180) // Load impedance(ohm/km) P = 316.8*10**3 // Load side power(W) PF_r = 0.8 // Load side power factor E_r = 3.3*10**3 // Load bus voltage(V) // Calculations Z_line = Z_l*l // Load impedance(ohm) I_r = P/(E_r*PF_r)*exp(%i*-acos(PF_r)) // Line current(A) sin_phi_r = (1-PF_r**2)**0.5 // Sinφ_R E_s = E_r+I_r*Z_line // Sending end voltage(V) reg = (abs(E_s)-abs(E_r))/abs(E_r)*100 // Voltage regulation(%) R = real(Z_line) // Resistance of the load line(ohm) loss = abs(I_r)**2*R // Loss in the transmission line(W) loss_kW = loss/1000.0 // Loss in the transmission line(kW) P_s = P+loss // Sending end power(W) angle_Er_Es = phasemag(E_s) // Angle between V_r and V_s(°) angle_Er_Ir = acosd(PF_r) // Angle between V_r and I_r(°) angle_Es_Is = angle_Er_Es+angle_Er_Ir // Angle between V_s and I_s(°) PF_s = cosd(angle_Es_Is) // Sending end power factor // Results disp("PART II - EXAMPLE : 3.6 : SOLUTION :-") printf("\nVoltage regulation = %.2f percent", reg) printf("\nSending end voltage, E_s = %.f∠%.1f° V", abs(E_s),phasemag(E_s)) printf("\nLine loss = %.f kW", loss_kW) printf("\nSending end power factor = %.2f ", PF_s)