// A Texbook on POWER SYSTEM ENGINEERING // A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar // DHANPAT RAI & Co. // SECOND EDITION // PART II : TRANSMISSION AND DISTRIBUTION // CHAPTER 3: STEADY STATE CHARACTERISTICS AND PERFORMANCE OF TRANSMISSION LINES // EXAMPLE : 3.25 : // Page number 163 clear ; clc ; close ; // Clear the work space and console // Given data z = complex(0.2,0.6) // Per phase impedance(ohm) V_r = 6351.0 // Receiving end voltage per phase(V) reg = 7.5/100.0 // Voltage regulation // Calculations V_s = (1+reg)*V_r // Sending end voltage per phase(V) R = real(z) // Resistance of the line(ohm) X = imag(z) // Reactance of the line(ohm) Z = (R**2+X**2)**0.5 // Impedance per phase(ohm) P_m = (V_r**2/Z)*((Z*V_s/V_r)-R) // Maximum power transmitted through line(W/phase) P_m_MW = P_m/10**6 // Maximum power transmitted through line(MW/phase) P_m_MWtotal = 3*P_m_MW // Total maximum power(MW) Q = -(V_r**2*X)/Z**2 // Reactive power per phase(Var) Q_MW = Q/10**6 // Reactive power per phase(MVAR) phi_r = atand(abs(Q_MW/P_m_MW)) // Φ_r(°) PF_r = cosd(phi_r) // Receiving end lagging PF I = P_m/(V_r*PF_r) // Current delivered(A) I_KA = I/1000.0 // Current delivered(KA) loss = 3*I**2*R // Total line loss(W) loss_MW = loss/10**6 // Total line loss(MW) // Results disp("PART II - EXAMPLE : 3.25 : SOLUTION :-") printf("\nMaximum power transmitted through the line, P_m = %.1f MW", P_m_MWtotal) printf("\nReceiving end power factor = %.2f (lagging)", PF_r) printf("\nTotal line loss = %.2f MW", loss_MW)