// A Texbook on POWER SYSTEM ENGINEERING // A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar // DHANPAT RAI & Co. // SECOND EDITION // PART II : TRANSMISSION AND DISTRIBUTION // CHAPTER 3: STEADY STATE CHARACTERISTICS AND PERFORMANCE OF TRANSMISSION LINES // EXAMPLE : 3.24 : // Page number 156-157 clear ; clc ; close ; // Clear the work space and console // Given data A = 0.94*exp(%i*1.5*%pi/180) // Constant B = 150.0*exp(%i*67.2*%pi/180) // Constant(ohm) D = A // Constant Y_t = 0.00025*exp(%i*-75.0*%pi/180) // Shunt admittance(mho) Z_t = 100.0*exp(%i*70.0*%pi/180) // Series impedance(ohm) // Calculations C = (A*D-1)/B // Constant(mho) A_0 = A*(1+Y_t*Z_t)+B*Y_t // Constant B_0 = A*Z_t+B // Constant(ohm) C_0 = C*(1+Y_t*Z_t)+D*Y_t // Constant(mho) D_0 = C*Z_t+D // Constant // Results disp("PART II - EXAMPLE : 3.24 : SOLUTION :-") printf("\nA_0 = %.3f∠%.f° ", abs(A_0),phasemag(A_0)) printf("\nB_0 = %.f∠%.1f° ohm", abs(B_0),phasemag(B_0)) printf("\nC_0 = %.6f∠%.1f° mho", abs(C_0),phasemag(C_0)) printf("\nD_0 = %.3f∠%.1f° \n", abs(D_0),phasemag(D_0)) printf("\nNOTE: Changes in obtained answer from that of textbook is due to more precision")