// A Texbook on POWER SYSTEM ENGINEERING // A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar // DHANPAT RAI & Co. // SECOND EDITION // PART II : TRANSMISSION AND DISTRIBUTION // CHAPTER 3: STEADY STATE CHARACTERISTICS AND PERFORMANCE OF TRANSMISSION LINES // EXAMPLE : 3.21 : // Page number 153 clear ; clc ; close ; // Clear the work space and console // Given data V_r = 132.0*10**3 // Line voltage at receiving end(V) P_L = 45.0*10**6 // Load delivered(VA) PF_r = 0.8 // Lagging power factor A = 0.99*exp(%i*0.3*%pi/180) // Constant B = 70.0*exp(%i*69.0*%pi/180) // Constant(ohms) C = A // Constant D = 4.0*10**-4*exp(%i*90.0*%pi/180) // Constant // Calculations E_r = V_r/3**0.5 // Receiving end phasemag voltage(V) I_r = P_L/(3**0.5*V_r)*exp(%i*-acos(PF_r)) // Line current(A) E_s = A*E_r+B*I_r // Sending end voltage(V) E_s_llkV = 3**0.5*E_s/1000.0 // Sending end line voltage(kV) I_s = C*I_r+D*E_r // Sending end current(A) angle_Er_Es = phasemag(E_s) // Angle between E_r and E_s(°) angle_Er_Is = phasemag(I_s) // Angle between E_r and I_s(°) angle_Es_Is = angle_Er_Es-angle_Er_Is // Angle between E_s and I_s(°) PF_s = cosd(angle_Es_Is) // Sending end power factor P_s = 3*abs(E_s*I_s)*PF_s // Sending end power(W) P_skW = P_s/1000.0 // Sending end power(kW) P_r = P_L*PF_r // Receiving end power(W) n = P_r/P_s*100 // Transmission efficiency(%) // Results disp("PART II - EXAMPLE : 3.21 : SOLUTION :-") printf("\nCase(i) : Sending end voltage, E_s = %.1f∠%.f° kV (line-to-line)", abs(E_s_llkV),phasemag(E_s_llkV)) printf("\nCase(ii) : Sending end current, I_s = %.1f∠%.1f° A", abs(I_s),phasemag(I_s)) printf("\nCase(iii): Sending end power, P_s = %.f kW", P_skW) printf("\nCase(iv) : Efficiency of transmission = %.2f percent \n", n) printf("\nNOTE: Changes in obtained answer from that textbook is due to more precision")