// A Texbook on POWER SYSTEM ENGINEERING // A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar // DHANPAT RAI & Co. // SECOND EDITION // PART II : TRANSMISSION AND DISTRIBUTION // CHAPTER 3: STEADY STATE CHARACTERISTICS AND PERFORMANCE OF TRANSMISSION LINES // EXAMPLE : 3.18 : // Page number 148 clear ; clc ; close ; // Clear the work space and console // Given data V_r = 220.0*10**3 // Line voltage at receiving end(V) Z = complex(40,200) // Impedance per phasemag(ohm) Y = %i*0.0015 // Admittance(mho) I_r = 200.0 // Receiving end current(A) PF_r = 0.95 // Lagging power factor // Calculations // Case(a) A = 1+(Y*Z/2)+((Y*Z)**2/24) // Constant B = Z*(1+(Y*Z/6)+((Y*Z)**2/120)+((Y*Z)**3/5040)) // Constant(ohm) C = Y*(1+(Y*Z/6)+((Y*Z)**2/120)+((Y*Z)**3/5040)) // Constant(mho) D = A // Constant E_r = V_r/3**0.5 // Receiving end phasemag voltage(V) I_r1 = I_r*exp(%i*-acos(PF_r)) // Line current(A) E_s = A*E_r+B*I_r1 // Sending end voltage(V) E_s_ll = 3**0.5*E_s/1000.0 // Sending end line voltage(kV) // Case(b) I_s = C*E_r+D*I_r1 // Sending end current(A) // Results disp("PART II - EXAMPLE : 3.18 : SOLUTION :-") printf("\nCase(a): Sending end voltage, E_s = %.1f∠%.2f° kV (line-to-line)", abs(E_s_ll),phasemag(E_s_ll)) printf("\nCase(b): Sending end current, I_s = %.1f∠%.2f° A\n", abs(I_s),phasemag(I_s)) printf("\nNOTE: ERROR: Z = (40+j200)Ω, not Z=(60+j200)Ω as given in problem statement") printf("\n Changes in obtained answer from that of textbook is due to more precision")