// A Texbook on POWER SYSTEM ENGINEERING // A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar // DHANPAT RAI & Co. // SECOND EDITION // PART II : TRANSMISSION AND DISTRIBUTION // CHAPTER 3: STEADY STATE CHARACTERISTICS AND PERFORMANCE OF TRANSMISSION LINES // EXAMPLE : 3.17 : // Page number 147-148 clear ; clc ; close ; // Clear the work space and console // Given data f = 50.0 // Frequency(Hz) L = 160.0 // Line length(km) r = 0.15 // Resistance(ohm/km/phasemag) l = 1.2*10**-3 // Inductance(H/km/phasemag) c = 0.008*10**-6 // Capacitance(F/km/phasemag) g = 0.0 // Conductance(mho/km/phasemag) // Calculations // Case(i) Using convergent series(Complex angles) method z = r+%i*2*%pi*f*l // Impedance(ohm/km) Z = z*L // Total series impedance(ohm) y = g+%i*2*%pi*f*c // Shunt admittance(S/km) Y = y*L // Total shunt admittance(S) A = 1+(Y*Z/2)+((Y*Z)**2/24) // Constant B = Z*(1+(Y*Z/6)+((Y*Z)**2/120)) // Constant(ohm) C = Y*(1+(Y*Z/6)+((Y*Z)**2/120)) // Constant(mho) D = A // Constant // Case(ii) Using convergent series(Real angles) method gamma_l = (Z*Y)**0.5 // γl alpha_l = real(gamma_l) // αl beta_l = imag(gamma_l) // βl Z_c = (Z/Y)**0.5 // Surge impedance(ohm) A_2 = cosh(gamma_l) // Constant B_2 = Z_c*sinh(gamma_l) // Constant(ohm) C_2 = (1/Z_c)*sinh(gamma_l) // Constant(mho) D_2 = A_2 // Constant // Results disp("PART II - EXAMPLE : 3.17 : SOLUTION :-") printf("\nCase(i): Using convergent series(Complex Angles) method") printf("\nA = D = %.3f∠%.1f° ", abs(A),phasemag(A)) printf("\nB = %.f∠%.1f° ohm", abs(B),phasemag(B)) printf("\nC = %.4f∠%.1f° mho \n", abs(C),phasemag(C)) printf("\nCase(ii): Using convergent series(Real Angles) method") printf("\nA = D = %.3f∠%.1f° ", abs(A_2),phasemag(A_2)) printf("\nB = %.1f∠%.1f° ohm", abs(B_2),phasemag(B_2)) printf("\nC = %.4f∠%.1f° S \n", abs(C_2),phasemag(C_2)) printf("\nNOTE: Slight change in obtained answer from that of textbook is due to more precision")