// A Texbook on POWER SYSTEM ENGINEERING // A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar // DHANPAT RAI & Co. // SECOND EDITION // PART II : TRANSMISSION AND DISTRIBUTION // CHAPTER 3: STEADY STATE CHARACTERISTICS AND PERFORMANCE OF TRANSMISSION LINES // EXAMPLE : 3.13 : // Page number 143-144 clear ; clc ; close ; // Clear the work space and console // Given data V_r = 220.0*10**3 // Receiving end voltage(V) Z = complex(20,100) // Impedance(ohm/phase) Y = %i*0.0010 // Admittance(mho) I_r = 300.0 // Receiving end current(A) PF_r = 0.9 // Lagging power factor // Calculations V_2 = V_r/3**0.5 // Receiving end phase voltage(V) I_2 = I_r*exp(%i*-acos(PF_r)) // Receiving end current(A) I_C2 = (Y/2)*V_2 // Capacitive current at receiving end(A) I = I_2+I_C2 V_1 = V_2+I*Z // Voltage across shunt admittance at sending end(V) V_1kV = V_1/1000.0 // Voltage across shunt admittance at sending end(kV) I_C1 = (Y/2)*V_1 // Capacitive current at sending end(A) I_1 = I_C1+I_2 // Sending end current(A) // Results disp("PART II - EXAMPLE : 3.13 : SOLUTION :-") printf("\nSending end voltage, V_1 = %.2f∠%.2f° kV", abs(V_1kV),phasemag(V_1kV)) printf("\nSending end current, I_1 = %.3f∠%.4f° A", abs(I_1),phasemag(I_1))