// A Texbook on POWER SYSTEM ENGINEERING // A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar // DHANPAT RAI & Co. // SECOND EDITION // PART II : TRANSMISSION AND DISTRIBUTION // CHAPTER 3: STEADY STATE CHARACTERISTICS AND PERFORMANCE OF TRANSMISSION LINES // EXAMPLE : 3.11 : // Page number 135-137 clear ; clc ; close ; // Clear the work space and console // Given data f = 50.0 // Frequency(Hz) R = 28.0 // Resistance(ohm/phasemag) X = 63.0 // Inductive reactance(ohm/phasemag) Y = 4.0*10**-4 // Capacitive susceptance(mho) P_r = 75.0*10**6 // Load at receiving end(VA) PF_r = 0.8 // Lagging load power factor V_r = 132.0*10**3 // Line voltage at receiving end(V) // Calculations // Case(i) Nominal T method Z = complex(R,X) // Total impedance(ohm/phasemag) E_r = V_r/3**0.5 // Receiving end phasemag voltage(V) I_r = P_r/(3**0.5*V_r)*exp(%i*-acos(PF_r)) // Line current at receiving end(A) E = E_r+I_r*(Z/2) I_c = %i*Y*E // Capacitive current(A) I_s = I_r+I_c // Sending end current(A) v_drop = I_s*(Z/2) // Voltage drop(V) E_s = E+I_s*(Z/2) // Sending end voltage(V) E_s_kV = E_s/1000.0 // Sending end voltage(kV) E_s_ll= 3**0.5*abs(E_s) // Sending end line voltage(V) E_s_llkV = E_s_ll/1000.0 // Sending end line voltage(kV) angle_Er_Es = phasemag(E_s) // Angle between E_r and E_s(°) angle_Er_Is = phasemag(I_s) // Angle between E_r and I_s(°) angle_Es_Is = angle_Er_Es-angle_Er_Is // Angle between E_s and I_s(°) PF_s = cosd(angle_Es_Is) // Sending end power factor P_s = 3**0.5*E_s_ll*abs(I_s)*PF_s // Power at sending end(W) reg = (abs(E_s_ll)-V_r)/V_r*100 // Regulation(%) n = (P_r*PF_r)/P_s*100 // Transmission efficiency(%) // Case(ii) Nominal π method I_c2 = E_r*(%i*Y/2) // Current through shunt admittance at receiving end(A) I = I_r+I_c2 // Line current(A) E_s_p = E_r+I*Z // Sending end voltage(V) E_s_pkV = E_s_p/1000.0 // Sending end voltage(kV) E_s_pll = 3**0.5*abs(E_s_p) // Sending end line voltage(V) E_s_pllkV = E_s_pll/1000.0 // Sending end line voltage(kV) I_c1 = E_s_p*(%i*Y/2) // Current through shunt admittance at sending end(A) I_s_p = I+I_c1 // Sending end current(A) angle_Er_Esp = phasemag(E_s) // Angle between E_r and E_s(°) angle_Er_Isp = phasemag(I_s) // Angle between E_r and I_s(°) angle_Es_Isp = angle_Er_Esp-angle_Er_Isp // Angle between E_s and I_s(°) PF_s_p = cosd(angle_Es_Isp) // Sending end power factor P_s_p = 3**0.5*E_s_pll*abs(I_s_p)*PF_s_p // Power at sending end(W) reg_p = (abs(E_s_pll)-V_r)/V_r*100 // Regulation(%) n_p = (P_r*PF_r)/P_s_p*100 // Transmission efficiency(%) // Results disp("PART II - EXAMPLE : 3.11 : SOLUTION :-") printf("\n(i) Nominal T method") printf("\nCase(a): Voltage at sending end, E_s = %.2f∠%.2f° kV = %.1f kV (line-to-line)", abs(E_s_kV),phasemag(E_s_kV),E_s_llkV) printf("\nCase(b): Sending end current, I_s = %.1f∠%.2f° A", abs(I_s),phasemag(I_s)) printf("\nCase(c): Power factor at sending end = %.4f (lagging)", PF_s) printf("\nCase(d): Regulation = %.2f percent", reg) printf("\nCase(e): Efficiency of transmission = %.2f percent \n", n) printf("\n(ii) Nominal π method") printf("\nCase(a): Voltage at sending end, E_s = %.2f∠%.2f° kV = %.1f kV (line-to-line)", abs(E_s_pkV),phasemag(E_s_pkV),E_s_pllkV) printf("\nCase(b): Sending end current, I_s = %.1f∠%.2f° A", abs(I_s_p),phasemag(I_s_p)) printf("\nCase(c): Power factor at sending end = %.4f (lagging)", PF_s_p) printf("\nCase(d): Regulation = %.2f percent", reg_p) printf("\nCase(e): Efficiency of transmission = %.2f percent \n", n_p) printf("\nNOTE: Changes in the obtained answer from that of textbook is due to more precision here and more approximation in textbook")