// A Texbook on POWER SYSTEM ENGINEERING // A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar // DHANPAT RAI & Co. // SECOND EDITION // PART II : TRANSMISSION AND DISTRIBUTION // CHAPTER 3: STEADY STATE CHARACTERISTICS AND PERFORMANCE OF TRANSMISSION LINES // EXAMPLE : 3.10 : // Page number 135 clear ; clc ; close ; // Clear the work space and console // Given data f = 50.0 // Frequency(Hz) l = 125.0 // Line length(km) P_r = 40.0*10**6 // Load at receiving end(VA) V_r = 110.0*10**3 // Line voltage at receiving end(V) PF_r = 0.8 // Lagging load power factor R = 11.0 // Resistance(ohm/phase) X = 38.0 // Inductive reactance(ohm/phase) Y = 3.0*10**-4 // Capacitive susceptance(S) // Calculations // Case(i) E_r = V_r/3**0.5 // Receiving end phase voltage(V) Z = complex(R,X) // Total impedance(ohm/phase) I_c1 = E_r*(Y/2)*exp(%i*90.0*%pi/180) // Current through shunt admittance at receiving end(A) I_r = P_r/(3**0.5*V_r)*exp(%i*-acos(PF_r)) // Load current(A) I = I_r+I_c1 // Current through series impedance(A) E_s = I*Z+E_r // Voltage across shunt admittance at sending end(V) E_s_ll = 3**0.5*E_s/1000.0 // Line to line voltage at sending end(kV) I_c2 = E_s*(Y/2)*exp(%i*90.0*%pi/180) // Current through shunt admittance at sending end(A) // Case(ii) I_s = I_c2+I_r // Sending end current(A) angle_Er_Es = phasemag(E_s) // Angle between E_r and E_s(°) angle_Er_Is = phasemag(I_s) // Angle between E_r and I_s(°) angle_Es_Is = angle_Er_Es-angle_Er_Is // Angle between E_s and I_s(°) PF_s = cosd(angle_Es_Is) // Sending end power factor // Results disp("PART II - EXAMPLE : 3.10 : SOLUTION :-") printf("\nCase(i) : Line to line voltage at sending end, E_s = %.f kV", abs(E_s_ll)) printf("\nCase(ii): Sending end power factor = %.3f \n", PF_s) printf("\nNOTE: Answers in the textbook are incomplete")