clear; clc; funcprot(0); //given data dt = 1.0;//tip diameter in m dh = 0.9;//hub diameter in m alpha1 = 30;//in deg beta1 = 60;//in deg alpha2 = 60;//in deg beta2 = 30;//in deg N = 6000;//rotational speed in rev/min rhog = 1.5;//gas density in kg/m^3 Rt = 0.5;//degree of reaction at the tip //Calculations omega = 2*%pi*N/60; Ut = omega*0.5*dt; Uh = omega*0.5*dh; cx = Ut/(tan(alpha1*%pi/180) + tan(beta1*%pi/180)); mdot = %pi*((0.5*dt)^2 - (0.5*dh)^2)*rhog*cx; Wcdot = mdot*Ut*cx*(tan(alpha2*%pi/180)- tan(alpha1*%pi/180)); ctheta1t = cx*tan(alpha1*%pi/180); ctheta1h = ctheta1t*(dt/dh); ctheta2t = cx*tan(alpha2*%pi/180); ctheta2h = ctheta2t*(dt/dh); alpha1_ = (180/%pi)*atan(ctheta1h/cx); beta1_ = (180/%pi)*atan((Uh/cx) - tan(alpha1_*%pi/180)); alpha2_ = (180/%pi)*atan(ctheta2h/cx); beta2_ = (180/%pi)*atan((Uh/cx) - tan(alpha2_*%pi/180)); k = Rt*(0.5*dt)^2; Rh = 1 - (k/(0.5*dh)^2); //Results printf('(i)The axial velocity, cx = %d m/s',cx); printf('\n (ii)The mass flow rate = %.1f kg/s',mdot); printf('\n (iii)The power absorbed by the stage = %.1f MW',Wcdot/(10^6)); printf('\n (iv)The flow angles at the hub are:\n alpha1 = %.2f deg,\n beta1 = %.2f deg,\n alpha2 = %.1f deg, and\n beta2 = %.2f deg.',alpha1_,beta1_,alpha2_,beta2_); printf('\n (v)The reaction ratio of the stage at the hub, R = %.3f.',Rh); //there are small errors in the answers given in textbook