clear; clc; funcprot(0); //given data T01= 288;//inlet absolute stagnation temperature in K p01 = 101;//inlet absolute stagnation pressure in kPa beta1 = 45;//relative flow angle at inlet to the rotor in deg M1_rel = 0.9;//inlet relative Mach number Yp = 0.068;//rotor loss coefficient Yp1 = 0.04;//stator loss coefficient M = 0.5;//rotor exit relative Mach number gamma = 1.4; R = 287.15; Cp = 1005;//in J/(kg.K); Q1 = 1.2698;//Q(0.9) from compressible flow tables Q2 = 0.9561;//Q(0.5) from compressible flow tables M2_rel = 0.5;//rotor exit relative Mach number is 0.5, //Calculations M1 = M1_rel*cos(beta1*%pi/180); T1 = T01/(1+(gamma-1)*0.5*M1^2); U = M1*sqrt(gamma*R*T1); p01_rel = p01*((T1/T01)^(gamma/(gamma-1)))*((1+(gamma-1)*0.5*M1_rel^2)^(gamma/(gamma-1))); p1 = p01*((T1/T01)^(gamma/(gamma-1))); p02_rel_p01_rel = 1-Yp*(1-((1+(gamma-1)*0.5*M1_rel^2)^(gamma/(gamma-1)))^-1); beta2 = (180/%pi)*acos((Q1/Q2)*cos(beta1*%pi/180)/p02_rel_p01_rel); p2_p02_rel = 0.8430;//from tables p2_p1 = p2_p02_rel*p02_rel_p01_rel*((1+(gamma-1)*0.5*M1_rel^2)^(gamma/(gamma-1))); p2 = p1*p2_p1; T2_T2_rel = 0.9524;//from tables T2 = T1*(T2_T2_rel)*(1+(gamma-1)*0.5*M1_rel^2); W2 = M2_rel*sqrt(gamma*R*T2); M2 = sqrt((W2*cos(beta2*%pi/180))^2 +(U-W2*sin(beta2*%pi/180))^2)/sqrt(gamma*R*T2); T02 = T2*(1+(gamma-1)*0.5*M2^2); p02 = p2*(1+(gamma-1)*0.5*M2^2)^(gamma/(gamma-1)); delS_rot = R*Yp*(1-(p1/p01_rel)); delS_sta = R*Yp1*(1-(p2/p02)); eff_tt = 1 - (T02*(delS_rot+delS_sta)/(Cp*(T02-T01))); //Results printf('(i) The rotor blade speed = %.1f m/s',U); printf('\n The blade relative stagnation pressure = %d kPa',p01_rel); printf('\n (ii) The rotor exit relative flow angle = %d deg.',ceil(beta2)); printf('\n The static pressure ratio across the rotor = %.3f',p2_p1); printf('\n (iii) The absolute stagnation temperature at entry to the stator = %.1f K',T02); printf('\n The absolute stagnation pressure at entry to the stator = %d kPa',ceil(p02)); printf('\n The total-to-total isentropic efficiency of the compressor stage = %.3f',eff_tt);