clear; clc; funcprot(0); //function to calculate values of blade chord and radius (optimum conditions) function [j,lamda,r,l] = fun(phi) lamda = 1-cos(phi*%pi/180); j = sin(phi*%pi/180)*(2*cos(phi*%pi/180)-1)/(1+2*cos(phi*%pi/180))/(lamda); r = 3*j; l = 8*%pi*j*lamda; endfunction //given data D = 30;//tip diameter in m J = 5.0;//tip-speed ratio Z = 3;//in m CL = 1.0; //Calculations phi1 = 30;//in deg phi2 = 20;//in deg phi3 = 15;//in deg phi4 = 10;//in deg phi5 = 7.556;//in deg //Values of blade chord and radius (optimum conditions) [j1,lamda1,r1,l1] = fun(phi1); [j2,lamda2,r2,l2] = fun(phi2); [j3,lamda3,r3,l3] = fun(phi3); [j4,lamda4,r4,l4] = fun(phi4); [j5,lamda5,r5,l5] = fun(phi5); printf('Values of blade chord and radius(optimum conditions):'); printf('\n -----------------------------------------------------------------'); printf('\n phi(deg) j 4flamda r(m) l(m)'); printf('\n -----------------------------------------------------------------'); printf('\n %d %.2f %.3f %.1f %.3f',phi1,j1,4*j1*lamda1,r1,l1); printf('\n %d %.2f %.3f %.2f %.3f',phi2,j2,4*j2*lamda2,r2,l2); printf('\n %d %.2f %.3f %.2f %.3f',phi3,j3,4*j3*lamda3,r3,l3); printf('\n %d %.3f %.4f %.1f %.3f',phi4,j4,4*j4*lamda4,r4,l4); printf('\n %.3f %d %.4f %d %.3f',phi5,ceil(j5),4*j5*lamda5,ceil(r5),l5); printf('\n -----------------------------------------------------------------'); l_R = [l1,l2,l3,l4,l5]/(0.5*D); r_R = [r1,r2,r3,r4,r5]/(0.5*D); plot(r_R,l_R); xlabel("r/R",'fontsize',3); ylabel("l/R",'fontsize',3); title("Optimal variation of chord length with radius",'fontsize',3); //there are very small errors in the ansers given in textbook