//Example 6.12 // Nyquist plot for a system with Multiple Crossover frequencies xdel(winsid())//close all graphics Windows clear; clc; //------------------------------------------------------------------ //System transfer function s=poly(0,'s'); K=85; g1=K*(s+1)/(s^2*(s^2+2*s+82)); g2=(s^2+2*s+43.25)/(s^2+2*s+101); Gs=syslin('c',g2*g1); //------------------------------------------------------------------ figure; //The nyquist plot of the system nyquist(Gs,0.5/2/%pi,100/2/%pi,0.005) title(["Nyquist plot for the complex system";... "$G(s)=85(s+1)(s^2+2s+43.25)/[((s^2+2s+82)(s^2+2s+101)]$"],... 'fontsize',3) exec .\fig_settings.sci; //custom script for setting figure properties zoom_rect([-2 -1 0.6 1]) f=gca(); f.x_location = "origin"; f.y_location = "origin"; xset("color",2); //------------------------------------------------------------------ //The bode plot of the system gm=g_margin(Gs); pm=p_margin(Gs) disp(pm,"Phase margin",gm,"Gain margin") figure(1) bode(Gs,0.01/2/%pi,100/2/%pi,0.01) title(["Bode plot for";... "$G(s)=85(s+1)(s^2+2s+43.25)/[((s^2+2s+82)(s^2+2s+101)]$"],... 'fontsize',3) exec .\fig_settings.sci; //custom script for setting figure properties //------------------------------------------------------------------